Skip to main content
Log in

A novel basic helix-loop-helix transcription factor, ZjICE2 from Zoysia japonica confers abiotic stress tolerance to transgenic plants via activating the DREB/CBF regulon and enhancing ROS scavenging

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

ZjICE2 works as a positive regulator in abiotic stress responses and ZjICE2 is a valuable genetic resource to improve abiotic stress tolerance in the molecular breeding program of Zoysia japonica.

Abstract

The basic helix-loop-helix (bHLH) family transcription factors (TFs) play an important role in response to biotic or abiotic stresses in plants. However, the functions of bHLH TFs in Zoysia japonica, one of the warm-season turfgrasses, remain poorly understood. Here, we identified ZjICE2 from Z. japonica, a novel MYC-type bHLH transcription factor that was closely related to ICE homologs in the phylogenetic tree, and its expression was regulated by various abiotic stresses. Transient expression of ZjICE2-GFP in onion epidermal cells revealed that ZjICE2 was a nuclear-localized protein. Also, ZjICE2 bound the MYC cis-element in the promoter of dehydration responsive element binding 1 of Z. japonica (ZjDREB1) using yeast one-hybrid assay. A phenotypic analysis showed that overexpression of the ZjICE2 in Arabidopsis enhanced tolerance to cold, drought, and salt stresses. The transgenic Arabidopsis and Z. japonica accumulated more transcripts of cold-responsive DREB/CBFs and their downstream genes than the wild type (WT) after cold treatment. Furthermore, the transgenic plants exhibited an enhanced Reactive oxygen species (ROS) scavenging ability, which resulted in an efficient maintenance of oxidant–antioxidant homeostasis. In addition, overexpression of the ZjICE2 in Z. japonica displayed intensive cold tolerance with increases in chlorophyll contents and photosynthetic efficiency. Our study suggests that ZjICE2 works as a positive regulator in abiotic stress responses and the ICE-DREB/CBFs response pathway involved in cold stress tolerance is also conserved in Z. japonica. These results provide a valuable genetic resource for the molecular breeding program especially for warm-season grasses as well as other leaf crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645

    CAS  PubMed  Google Scholar 

  • Akhtar M, Jaiswal A, Taj G, Jaiswal J, Qureshi M, Singh N (2012) DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet 91:385–395

    CAS  PubMed  Google Scholar 

  • Atchley WR, Fitch WM (1997) A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci USA 94:5172–5176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badawi M, Reddy YV, Agharbaoui Z, Tominaga Y, Danyluk J, Sarhan F, Houde M (2008) Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. Plant Cell Physiol 49:1237–1249

    CAS  PubMed  Google Scholar 

  • Bae T, Vanjildorj E, Song S, Nishiguchi S, Yang S, Song I, Chandrasekhar T, Kang T, Kim J, Koh Y (2008) Environmental risk assessment of genetically engineered herbicide-tolerant Zoysia japonica. J Environ Qual 37:207–218

    CAS  PubMed  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms-getting genomics going. Curr Opin Plant Biol 9:180–188

    CAS  PubMed  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol 43:83–116

    CAS  Google Scholar 

  • Caverzan A, Piasecki C, Chavarria G, Stewart CN, Vargas L (2019) Defenses against ROS in crops and weeds: the effects of interference and herbicides. Int J Mol Sci 20:1086

    CAS  PubMed Central  Google Scholar 

  • Cheng X, Xiong R, Liu H, Wu M, Chen F, Yan H, Xiang Y (2018) Basic helix-loop-helix gene family: genome-wide identification, phylogeny, and expression in Moso bamboo. Plant Physiol Biochem 132:104–119

    CAS  PubMed  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of coldinduced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32:278–289

    CAS  PubMed  Google Scholar 

  • Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng XM, Zhao Q, Zhao LL, Qiao Y, Xie XB, Li HF, Yao YX, You CX, Hao YJ (2012) The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biol 12:22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng HL, Ma NN, Meng X, Zhang S, Wang JR, Chai S, Meng QW (2013) A novel tomato MYC-type ICE1like transcription factor, SlICE1a, confers cold, osmotic and salt tolerance in transgenic tobacco. Plant Physiol Biochem 73:309–320

    CAS  PubMed  Google Scholar 

  • Fursova OV, Pogorelko GV, Tarasov VA (2009) Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429:98–103

    CAS  PubMed  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    CAS  PubMed  Google Scholar 

  • Gururani MA, Venkatesh J, Ganesan M, Strasser RJ, Han Y, Kim JI, Lee HY, Song PS (2015) In vivo assessment of cold tolerance through chlorophylla fluorescence in transgenic zoysiagrass expressing mutant phytochrome A. PLoS ONE 10:e0127200

    PubMed  PubMed Central  Google Scholar 

  • Gusmão M, Valério J, Matta F, Souza F, Vigna B, Fávero A, Barioni W Jr, Inácio G (2016) WarmSeason (C4) turfgrass genotypes resistant to spittlebugs (Hemiptera: Cercopidae). J Econ Entomol 109:1914–1921

    PubMed  Google Scholar 

  • Hannah MA, Heyer AG, Hincha DK (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 1:e26

    PubMed  PubMed Central  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heidarvand L, Amiri RM (2010) What happens in plant molecular responses to cold stress? Acta Physiol Plant 32:419–431

    CAS  Google Scholar 

  • Hu Y, Jiang L, Wang F, Yu D (2013) Jasmonate regulates the inducer of CBF expression–c-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25:2907–2924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Li K, Jin C, Zhang S (2015) ICE1 of Pyrus ussuriensis functions in cold tolerance by enhancing PuDREBa transcriptional levels through interacting with PuHHP1. Sci Rep 5:17620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inokuma C, Sugiura K, Imaizumi N, Cho C (1998) Transgenic Japanese lawngrass (Zoysia japonica Steud) plants regenerated from protoplasts. Plant Cell Rep 17:334–338

    CAS  PubMed  Google Scholar 

  • Jiang Y, Yang B, Deyholos MK (2009) Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Genet Genomics 282:503–516

    CAS  PubMed  Google Scholar 

  • Jung KH, Han MJ, Lee DY, Lee YS, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim YW (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18:3015–3032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kashyap P, Deswal R (2019) Two ICE isoforms showing differential transcriptional regulation by cold and hormones participate in Brassica juncea cold stress signaling. Gene 695:32–41

    CAS  PubMed  Google Scholar 

  • Khayatnezhad M, Gholamin R, JamaatieSomarin S, ZabihieMahmoodabad R (2011) The leaf chlorophyll content and stress resistance relationship considering in Corn cultivars (Zea Mays). Adv Environ Biol 1:118–123

    Google Scholar 

  • Kim SH, Kim HS, Bahk S, An J, Yoo Y, Kim JY, Chung WS (2017) Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis. Nucleic Acids Res 45:6613–6627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knight H (1999) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195:269–324

    Google Scholar 

  • Kurbidaeva A, Ezhova T, Novokreshchenova M (2014) Arabidopsis thaliana ICE2 gene: phylogeny, structural evolution and functional diversification from ICE1. Plant Sci 229:10–22

    CAS  PubMed  Google Scholar 

  • Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J, Ma H, Wang J, Zhang D (2006) Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol 141:1167–1184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Xing C, Yao Z, Huang X (2017a) Pbr MYB 21, a novel MYB protein of Pyrus betulaefolia, functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene. Plant Biotechnol J 15:1186–1203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Ding Y, Shi Y, Zhang X, Zhang S, Gong Z, Yang S (2017b) MPK3-and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis. Dev Cell 43:630–642

    CAS  PubMed  Google Scholar 

  • Li S, Yang Y, Zhang Q, Liu N, Xu Q, Hu L (2018) Differential physiological and metabolic response to low temperature in two zoysiagrass genotypes native to high and low latitude. PLoS ONE 13:e0198885

    PubMed  PubMed Central  Google Scholar 

  • Liu W, Tai H, Li S, Gao W, Zhao M, Xie C, Li WX (2014) bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol 201:1192–1204

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2–∆∆CT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D (2015) COLD1 confers chilling tolerance in rice. Cell 160:1209–1221

    CAS  PubMed  Google Scholar 

  • Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monte E, Tepperman JM, AlSady B, Kaczorowski KA, Alonso JM, Ecker JR, Li X, Zhang Y, Quail PH (2004) The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in lightinduced chloroplast development. Proc Natl Acad Sci USA 101:16091–16098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno JE, MorenoPiovano G, Chan RL (2018) The antagonistic basic helix-loop-helix partners BEE and IBH1 contribute to control plant tolerance to abiotic stress. Plant Sci 271:143–150

    CAS  PubMed  Google Scholar 

  • Murre C, McCaw PS, Baltimore D (1989) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783

    CAS  PubMed  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno S, Hosokawa M, Hoshino A, Kitamura Y, Morita Y, Park KI, Nakashima A, Deguchi A, Tatsuzawa F, Doi M (2011) A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis). J Exp Bot 62:5105–5116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okazaki Y, Saito K (2014) Roles of lipids as signaling molecules and mitigators during stress response in plants. Plant J 79:584–596

    CAS  PubMed  Google Scholar 

  • Peng PH, Lin CH, Tsai HW, Lin TY (2014) Cold response in Phalaenopsis aphrodite and characterization of PaCBF1 and PaICE1. Plant Cell Physiol 55:1623–1635

    CAS  PubMed  Google Scholar 

  • Pompeiano A, Volpi I, Volterrani M, Guglielminetti L (2013) N source affects freeze tolerance in bermudagrass and zoysiagrass. Acta Agric Scand B 63:341–351

    CAS  Google Scholar 

  • Raissig MT, Abrash E, Bettadapur A, Vogel JP, Bergmann DC (2016) Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity. Proc Natl Acad Sci USA 113:8326–8331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65:907–921

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    CAS  PubMed  Google Scholar 

  • Song IJ, Bae TW, Ganesan M, Kim JI, Lee HY, Song PS (2013) Transgenic herbicide resistant turfgrasses. In: Price AJ, Kelton JA (eds) Herbicides current research and case studies in use. InTech North America, New York, pp 377–395

    Google Scholar 

  • Stanton KM, Mickelbart MV (2014) Maintenance of water uptake and reduced water loss contribute to water stress tolerance of Spiraea alba Du Roi and Spiraea tomentosa L. Hortic Res 1:14033

    PubMed  PubMed Central  Google Scholar 

  • Sun H, Fan HJ, Ling HQ (2015) Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genomics 16:9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 60. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S (2018) NAC transcription factor JUNGBRUNNEN 1 enhances drought tolerance in tomato. Plant Biotechnol J 16:354–366

    CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    CAS  PubMed  Google Scholar 

  • Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toyama K, Bae CH, Kang JG, Lim YP, Adachi T, Riu KZ, Song PS, Lee HY (2003) Production of herbicide-tolerant zoysiagrass by Agrobacterium-mediated transformation. Mol Cells 16:19–27

    CAS  PubMed  Google Scholar 

  • Wang J, Lian W, Cao Y, Wang X, Wang G, Qi C, Liu L, Qin S, Yuan X, Li X (2018) Overexpression of BoNAC019, a NAC transcription factor from Brassica oleracea, negatively regulates the dehydration response and anthocyanin biosynthesis in Arabidopsis. Sci Rep 8:13349

    PubMed  PubMed Central  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:165–183

    Google Scholar 

  • Xu W, Jiao Y, Li R, Zhang N, Xiao D, Ding X, Wang Z (2014) Chinese wild-growing Vitis amurensis ICE1 and ICE2 encode MYCtype bHLH transcription activators that regulate cold tolerance in Arabidopsis. PLoS ONE 9:e102303

    PubMed  PubMed Central  Google Scholar 

  • Yao P, Sun Z, Li C, Zhao X, Li M, Deng R, Huang Y, Zhao H, Chen H, Wu Q (2018) Overexpression of Fagopyrum tataricum FtbHLH2 enhances tolerance to cold stress in transgenic Arabidopsis. Plant Physiol Biochem 125:85–94

    CAS  PubMed  Google Scholar 

  • Ye K, Li H, Ding Y, Shi Y, Song CP, Gong Z, Yang S (2019) BRASSINOSTEROID-INSENSITIVE2 negatively regulates the stability of transcription factor ICE1 in response to cold stress in Arabidopsis. Plant Cell 31:2682–2696

    PubMed  PubMed Central  Google Scholar 

  • Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367

    CAS  PubMed  Google Scholar 

  • Zhao C, Lang Z, Zhu JK (2015) Cold responsive gene transcription becomes more complex. Trends Plant Sci 20:466468

    Google Scholar 

  • Zhao H, Zhao X, Li M, Jiang Y, Xu J, Jin J, Li K (2018) Ectopic expression of Limonium bicolor (Bag) Kuntze DREB (LbDREB) results in enhanced salt stress tolerance of transgenic Populus ussuriensis Kom. Plant Cell Tissue Org 132:123–136

    CAS  Google Scholar 

  • Zhou J, Li F, Wang JL, Ma Y, Chong K, Xu YY (2009) Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt and osmotic stress in Arabidopsis. J Plant Physiol 166:1296–1306

    CAS  PubMed  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo ZF, Kang HG, Park MY, Jeong H, Sun HJ, Yang DH, Lee YE, Song PS, Lee HY (2019) Overexpression of ICE1, a regulator of cold-induced transcriptome, confers cold tolerance to transgenic Zoysia japonica. J Plant Biol 62:137–146

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) of the Ministry of Education (2016R1A6A1A03012862 and 2019R1A6A1A11052070), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

ZZ performed the experiments, data analysis and manuscript writing. QH, MP, HS, PS, JK, and HL revised the manuscript. ZZ and HK designed the experimental plans and jointly revised the manuscript. All the authors agreed on the contents of the paper and declare no conflicts of interest.

Corresponding authors

Correspondence to Hong-Gyu Kang or Hyo-Yeon Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, ZF., Kang, HG., Hong, QC. et al. A novel basic helix-loop-helix transcription factor, ZjICE2 from Zoysia japonica confers abiotic stress tolerance to transgenic plants via activating the DREB/CBF regulon and enhancing ROS scavenging. Plant Mol Biol 102, 447–462 (2020). https://doi.org/10.1007/s11103-019-00957-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00957-0

Keywords

Navigation