Skip to main content

Advertisement

Log in

Curse of the devil: molecular insights into the emergence of transmissible cancers in the Tasmanian devil (Sarcophilus harrisii)

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The Tasmanian devil (Sarcophilus harrisii) is the only mammalian species known to be affected by multiple transmissible cancers. Devil facial tumours 1 and 2 (DFT1 and DFT2) are independent neoplastic cell lineages that produce large, disfiguring cancers known as devil facial tumour disease (DFTD). The long-term persistence of wild Tasmanian devils is threatened due to the ability of DFTD cells to propagate as contagious allografts and the high mortality rate of DFTD. Recent studies have demonstrated that both DFT1 and DFT2 cancers originated from founder cells of the Schwann cell lineage, an uncommon origin of malignant cancer in humans. This unprecedented finding has revealed a potential predisposition of Tasmanian devils to transmissible cancers of the Schwann cell lineage. In this review, we compare the molecular nature of human Schwann cells and nerve sheath tumours with DFT1 and DFT2 to gain insights into the emergence of transmissible cancers in the Tasmanian devil. We discuss a potential mechanism, whereby Schwann cell plasticity and frequent wounding in Tasmanian devils combine with an inherent cancer predisposition and low genetic diversity to give rise to transmissible Schwann cell cancers in devils on rare occasions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Metzger MJ, Goff SP (2016) A sixth modality of infectious disease: contagious cancer from devils to clams and beyond. PLoS Pathog 12(10):e1005904. https://doi.org/10.1371/journal.ppat.1005904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pearse AM, Swift K (2006) Allograft theory: transmission of devil facial-tumour disease. Nature 439(7076):549. https://doi.org/10.1038/439549a

    Article  CAS  PubMed  Google Scholar 

  3. Murgia C, Pritchard JK, Kim SY, Fassati A, Weiss RA (2006) Clonal origin and evolution of a transmissible cancer. Cell 126(3):477–487. https://doi.org/10.1016/j.cell.2006.05.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Metzger MJ, Reinisch C, Sherry J, Goff SP (2015) Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell 161(2):255–263. https://doi.org/10.1016/j.cell.2015.02.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Matser YAH, Terpstra ML, Nadalin S, Nossent GD, de Boer J, van Bemmel BC, van Eeden S, Budde K, Brakemeier S, Bemelman FJ (2018) Transmission of breast cancer by a single multiorgan donor to 4 transplant recipients. Am J Transplant 18(7):1810–1814. https://doi.org/10.1111/ajt.14766

    Article  PubMed  Google Scholar 

  6. Gartner HV, Seidl C, Luckenbach C, Schumm G, Seifried E, Ritter H, Bultmann B (1996) Genetic analysis of a sarcoma accidentally transplanted from a patient to a surgeon. N Engl J Med 335(20):1494–1496. https://doi.org/10.1056/nejm199611143352004

    Article  CAS  PubMed  Google Scholar 

  7. Pye RJ, Pemberton D, Tovar C, Tubio JM, Dun KA, Fox S, Darby J, Hayes D, Knowles GW, Kreiss A, Siddle HV, Swift K, Lyons AB, Murchison EP, Woods GM (2016) A second transmissible cancer in Tasmanian devils. Proc Natl Acad Sci USA 113(2):374–379. https://doi.org/10.1073/pnas.1519691113

    Article  CAS  PubMed  Google Scholar 

  8. Metzger MJ, Villalba A, Carballal MJ, Iglesias D, Sherry J, Reinisch C, Muttray AF, Baldwin SA, Goff SP (2016) Widespread transmission of independent cancer lineages within multiple bivalve species. Nature 534(7609):705–709. https://doi.org/10.1038/nature18599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yonemitsu MA, Giersch RM, Polo-Prieto M, Hammel M, Simon A, Cremonte F, Aviles FT, Merino-Veliz N, Burioli EA, Muttray AF, Sherry J, Reinisch C, Baldwin SA, Goff SP, Houssin M, Arriagada G, Vazquez N, Bierne N, Metzger MJ (2019) A single clonal lineage of transmissible cancer identified in two marine mussel species in South America and Europe. Elife. https://doi.org/10.7554/eLife.47788

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lakkis FG, Dellaporta SL, Buss LW (2008) Allorecognition and chimerism in an invertebrate model organism. Organogenesis 4(4):236–240. https://doi.org/10.4161/org.4.4.7151

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fernandez-Busquets X, Burger MM (1999) Cell adhesion and histocompatibility in sponges. Microsc Res Tech 44(4):204–218. https://doi.org/10.1002/(sici)1097-0029(19990215)44:4%3c204:Aid-jemt2%3e3.0.Co;2-i

    Article  CAS  PubMed  Google Scholar 

  12. Murchison EP, Tovar C, Hsu A, Bender HS, Kheradpour P, Rebbeck CA, Obendorf D, Conlan C, Bahlo M, Blizzard CA, Pyecroft S, Kreiss A, Kellis M, Stark A, Harkins TT, Marshall Graves JA, Woods GM, Hannon GJ, Papenfuss AT (2010) The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer. Science 327(5961):84–87. https://doi.org/10.1126/science.1180616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Patchett AL, Coorens THH, Darby J, Wilson R, McKay MJ, Kamath KS, Rubin A, Wakefield M, McIntosh L, Mangiola S, Pye RJ, Flies AS, Corcoran LM, Lyons AB, Woods GM, Murchison EP, Papenfuss AT, Tovar C (2019) Two of a kind: transmissible Schwann cell cancers in the endangered Tasmanian devil (Sarcophilus harrisii). Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03259-2

    Article  PubMed  Google Scholar 

  14. Baez-Ortega A, Gori K, Strakova A, Allen JL, Allum KM, Bansse-Issa L, Bhutia TN, Bisson JL, Briceno C, Castillo Domracheva A, Corrigan AM, Cran HR, Crawford JT, Davis E, de Castro KF, BdN A, de Vos AP, Delgadillo Keenan L, Donelan EM, Espinoza Huerta AR, Faramade IA, Fazil M, Fotopoulou E, Fruean SN, Gallardo-Arrieta F et al (2019) Somatic evolution and global expansion of an ancient transmissible cancer lineage. Science. https://doi.org/10.1126/science.aau9923

    Article  PubMed  Google Scholar 

  15. Murchison EP, Wedge DC, Alexandrov LB, Fu B, Martincorena I, Ning Z, Tubio JMC, Werner EI, Allen J, De Nardi AB, Donelan EM, Marino G, Fassati A, Campbell PJ, Yang F, Burt A, Weiss RA, Stratton MR (2014) Transmissible [corrected] dog cancer genome reveals the origin and history of an ancient cell lineage. Science 343(6169):437–440. https://doi.org/10.1126/science.1247167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Frampton D, Schwenzer H, Marino G, Butcher LM, Pollara G, Kriston-Vizi J, Venturini C, Austin R, de Castro KF, Ketteler R, Chain B, Goldstein RA, Weiss RA, Beck S, Fassati A (2018) Molecular signatures of regression of the canine transmissible venereal tumor. Cancer Cell 33(4):620–633.e626. https://doi.org/10.1016/j.ccell.2018.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Amber EI, Henderson RA, Adeyanju JB, Gyang EO (1990) Single-drug chemotherapy of canine transmissible venereal tumor with cyclophosphamide, methotrexate, or vincristine. J Vet Intern Med 4(3):144–147. https://doi.org/10.1111/j.1939-1676.1990.tb00887.x

    Article  CAS  PubMed  Google Scholar 

  18. Murchison EP (2008) Clonally transmissible cancers in dogs and Tasmanian devils. Oncogene 27(Suppl 2):S19–30. https://doi.org/10.1038/onc.2009.350

    Article  CAS  PubMed  Google Scholar 

  19. Hawkins CE, Baars C, Hesterman H, Hocking G, Jones ME, Lazenby B, Mann D, Mooney N, Pemberton D, Pyecroft S (2006) Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biol Conserv 131(2):307–324. https://doi.org/10.1016/j.biocon.2006.04.010

    Article  Google Scholar 

  20. Stammnitz MR, Coorens THH, Gori KC, Hayes D, Fu B, Wang J, Martin-Herranz DE, Alexandrov LB, Baez-Ortega A, Barthorpe S, Beck A, Giordano F, Knowles GW, Kwon YM, Hall G, Price S, Pye RJ, Tubio JMC, Siddle HVT, Sohal SS, Woods GM, McDermott U, Yang F, Garnett MJ, Ning Z et al (2018) The origins and vulnerabilities of two transmissible cancers in Tasmanian Devils. Cancer Cell 33(4):607–619.e615. https://doi.org/10.1016/j.ccell.2018.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McCallum H (2008) Tasmanian devil facial tumour disease: lessons for conservation biology. Trends Ecol Evol 23(11):631–637. https://doi.org/10.1016/j.tree.2008.07.001

    Article  PubMed  Google Scholar 

  22. Lazenby BT, Tobler MW, Brown WE, Hawkins CE, Hocking GJ, Hume F, Huxtable S, Iles P, Jones ME, Lawrence C, Thalmann S, Wise P, Williams H, Fox S, Pemberton D (2018) Density trends and demographic signals uncover the long-term impact of transmissible cancer in Tasmanian devils. J Appl Ecol 55(3):1368–1379. https://doi.org/10.1111/1365-2664.13088

    Article  PubMed  PubMed Central  Google Scholar 

  23. Loh R, Bergfeld J, Hayes D, O'Hara A, Pyecroft S, Raidal S, Sharpe R (2006) The pathology of devil facial tumor disease (DFTD) in Tasmanian Devils (Sarcophilus harrisii). Vet Pathol 43(6):890–895. https://doi.org/10.1354/vp.43-6-890

    Article  CAS  PubMed  Google Scholar 

  24. Ruiz-Aravena M, Jones ME, Carver S, Estay S, Espejo C, Storfer A, Hamede RK (2018) Sex bias in ability to cope with cancer: Tasmanian devils and facial tumour disease. Proc Biol Sci. https://doi.org/10.1098/rspb.2018.2239

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hamede RK, Mccallum H, Jones M (2008) Seasonal, demographic and density-related patterns of contact between Tasmanian devils (Sarcophilus harrisii): implications for transmission of devil facial tumour disease. Austral Ecol 33(5):614–622. https://doi.org/10.1111/j.1442-9993.2007.01827.x

    Article  Google Scholar 

  26. Hamede RK, McCallum H, Jones M (2013) Biting injuries and transmission of Tasmanian devil facial tumour disease. J Anim Ecol 82(1):182–190. https://doi.org/10.1111/j.1365-2656.2012.02025.x

    Article  PubMed  Google Scholar 

  27. Jones ME, Cockburn A, Hamede R, Hawkins C, Hesterman H, Lachish S, Mann D, McCallum H, Pemberton D (2008) Life-history change in disease-ravaged Tasmanian devil populations. Proc Natl Acad Sci USA 105(29):10023–10027. https://doi.org/10.1073/pnas.0711236105

    Article  PubMed  Google Scholar 

  28. Lachish S, McCallum H, Jones M (2009) Demography, disease and the devil: life-history changes in a disease-affected population of Tasmanian devils (Sarcophilus harrisii). J Anim Ecol 78(2):427–436. https://doi.org/10.1111/j.1365-2656.2008.01494.x

    Article  PubMed  Google Scholar 

  29. Wells K, Hamede RK, Jones ME, Hohenlohe PA, Storfer A, McCallum HI (2019) Individual and temporal variation in pathogen load predicts long-term impacts of an emerging infectious disease. Ecology 100(3):e02613. https://doi.org/10.1002/ecy.2613

    Article  PubMed  PubMed Central  Google Scholar 

  30. Epstein B, Jones M, Hamede R, Hendricks S, McCallum H, Murchison EP, Schonfeld B, Wiench C, Hohenlohe P, Storfer A (2016) Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nat Commun 7:12684. https://doi.org/10.1038/ncomms12684

    Article  PubMed  PubMed Central  Google Scholar 

  31. Grueber CE, Fox S, McLennan EA, Gooley RM, Pemberton D, Hogg CJ, Belov K (2019) Complex problems need detailed solutions: Harnessing multiple data types to inform genetic management in the wild. Evol Appl 12(2):280–291. https://doi.org/10.1111/eva.12715

    Article  PubMed  Google Scholar 

  32. Siddle HV, Kreiss A, Eldridge MD, Noonan E, Clarke CJ, Pyecroft S, Woods GM, Belov K (2007) Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proc Natl Acad Sci USA 104(41):16221–16226. https://doi.org/10.1073/pnas.0704580104

    Article  PubMed  Google Scholar 

  33. Siddle HV, Kreiss A, Tovar C, Yuen CK, Cheng Y, Belov K, Swift K, Pearse AM, Hamede R, Jones ME, Skjodt K, Woods GM, Kaufman J (2013) Reversible epigenetic down-regulation of MHC molecules by devil facial tumour disease illustrates immune escape by a contagious cancer. Proc Natl Acad Sci USA 110(13):5103–5108. https://doi.org/10.1073/pnas.1219920110

    Article  PubMed  Google Scholar 

  34. Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A, Lam EYN, Azidis-Yates E, Vassiliadis D, Bell CC, Gilan O, Jackson S, Tan L, Wong SQ, Hollizeck S, Michalak EM, Siddle HV, McCabe MT, Prinjha RK, Guerra GR, Solomon BJ, Sandhu S, Dawson SJ, Beavis PA, Tothill RW, Cullinane C et al (2019) An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell. https://doi.org/10.1016/j.ccell.2019.08.008

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tovar C, Obendorf D, Murchison EP, Papenfuss AT, Kreiss A, Woods GM (2011) Tumor-specific diagnostic marker for transmissible facial tumors of Tasmanian devils: immunohistochemistry studies. Vet Pathol 48(6):1195–1203. https://doi.org/10.1177/0300985811400447

    Article  CAS  PubMed  Google Scholar 

  36. Murchison EP, Schulz-Trieglaff OB, Ning Z, Alexandrov LB, Bauer MJ, Fu B, Hims M, Ding Z, Ivakhno S, Stewart C, Ng BL, Wong W, Aken B, White S, Alsop A, Becq J, Bignell GR, Cheetham RK, Cheng W, Connor TR, Cox AJ, Feng ZP, Gu Y, Grocock RJ, Harris SR et al (2012) Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148(4):780–791. https://doi.org/10.1016/j.cell.2011.11.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. James S, Jennings G, Kwon YM, Stammnitz M, Fraik A, Storfer A, Comte S, Pemberton D, Fox S, Brown B (2019) Tracing the rise of malignant cell lines: distribution, epidemiology and evolutionary interactions of two transmissible cancers in Tasmanian devils. Evol Appl 12(9):1772–1780. https://doi.org/10.1111/eva.12831

    Article  PubMed  PubMed Central  Google Scholar 

  38. Loh R, Hayes D, Mahjoor A, O'Hara A, Pyecroft S, Raidal S (2006) The immunohistochemical characterization of devil facial tumor disease (DFTD) in the Tasmanian Devil (Sarcophilus harrisii). Vet Pathol 43(6):896–903. https://doi.org/10.1354/vp.43-6-896

    Article  CAS  PubMed  Google Scholar 

  39. Ng VY, Scharschmidt TJ, Mayerson JL, Fisher JL (2013) Incidence and survival in sarcoma in the United States: a focus on musculoskeletal lesions. Anticancer Res 33(6):2597–2604

    PubMed  Google Scholar 

  40. Woodhoo A, Sommer L (2008) Development of the Schwann cell lineage: from the neural crest to the myelinated nerve. Glia 56(14):1481–1490. https://doi.org/10.1002/glia.20723

    Article  PubMed  Google Scholar 

  41. Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6(9):671–682. https://doi.org/10.1038/nrn1746

    Article  CAS  PubMed  Google Scholar 

  42. Decker L, Desmarquet-Trin-Dinh C, Taillebourg E, Ghislain J, Vallat JM, Charnay P (2006) Peripheral myelin maintenance is a dynamic process requiring constant Krox20 expression. J Neurosci 26(38):9771–9779. https://doi.org/10.1523/jneurosci.0716-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Topilko P, Schneider-Maunoury S, Levi G, Baron-Van Evercooren A, Chennoufi AB, Seitanidou T, Babinet C, Charnay P (1994) Krox-20 controls myelination in the peripheral nervous system. Nature 371(6500):796–799. https://doi.org/10.1038/371796a0

    Article  CAS  PubMed  Google Scholar 

  44. Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S, Xu X, Esper RM, Loeb JA, Shrager P, Chao MV, Falls DL, Role L, Salzer JL (2005) Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47(5):681–694. https://doi.org/10.1016/j.neuron.2005.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Syed N, Reddy K, Yang DP, Taveggia C, Salzer JL, Maurel P, Kim HA (2010) Soluble neuregulin-1 has bifunctional, concentration-dependent effects on Schwann cell myelination. J Neurosci 30(17):6122–6131. https://doi.org/10.1523/jneurosci.1681-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Birchmeier C, Nave KA (2008) Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 56(14):1491–1497. https://doi.org/10.1002/glia.20753

    Article  PubMed  Google Scholar 

  47. Aguayo AJ, Charron L, Bray GM (1976) Potential of Schwann cells from unmyelinated nerves to produce myelin: a quantitative ultrastructural and radiographic study. J Neurocytol 5(8):565–573. https://doi.org/10.1007/bf01175570

    Article  CAS  PubMed  Google Scholar 

  48. Kosack L, Wingelhofer B, Popa A, Orlova A, Agerer B, Vilagos B, Majek P, Parapatics K, Lercher A, Ringler A, Klughammer J, Smyth M, Khamina K, Baazim H, de Araujo ED, Rosa DA, Park J, Tin G, Ahmar S, Gunning PT, Bock C, Siddle HV, Woods GM, Kubicek S, Murchison EP et al (2019) The ERBB-STAT3 axis drives Tasmanian Devil facial tumor disease. Cancer Cell 35(1):125–139.e129. https://doi.org/10.1016/j.ccell.2018.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Negro S, Bergamin E, Rodella U, Duregotti E, Scorzeto M, Jalink K, Montecucco C, Rigoni M (2016) ATP released by injured neurons activates schwann cells. Front Cell Neurosci 10:134. https://doi.org/10.3389/fncel.2016.00134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Man LL, Liu F, Wang YJ, Song HH, Xu HB, Zhu ZW, Zhang Q, Wang YJ (2015) The HMGB1 signaling pathway activates the inflammatory response in Schwann cells. Neural Regen Res 10(10):1706–1712. https://doi.org/10.4103/1673-5374.167773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ino D, Sagara H, Suzuki J, Kanemaru K, Okubo Y, Iino M (2015) Neuronal regulation of schwann cell mitochondrial Ca(2+) signaling during myelination. Cell Rep 12(12):1951–1959. https://doi.org/10.1016/j.celrep.2015.08.039

    Article  CAS  PubMed  Google Scholar 

  52. Gomez-Sanchez JA, Pilch KS, van der Lans M, Fazal SV, Benito C, Wagstaff LJ, Mirsky R, Jessen KR (2017) After nerve injury, lineage tracing shows that myelin and remak schwann cells elongate extensively and branch to form repair schwann cells, which shorten radically on remyelination. J Neurosci 37(37):9086–9099. https://doi.org/10.1523/jneurosci.1453-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E, Banerjee A, Woodhoo A, Jenkins B, Rahman M, Turmaine M, Wicher GK, Mitter R, Greensmith L, Behrens A, Raivich G, Mirsky R, Jessen KR (2012) c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75(4):633–647. https://doi.org/10.1016/j.neuron.2012.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Clements MP, Byrne E, Camarillo Guerrero LF, Cattin AL, Zakka L, Ashraf A, Burden JJ, Khadayate S, Lloyd AC, Marguerat S, Parrinello S (2017) The wound microenvironment reprograms Schwann cells to invasive mesenchymal-like cells to drive peripheral nerve regeneration. Neuron 96(1):98–114.e117. https://doi.org/10.1016/j.neuron.2017.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang JY, Luo XG, Xian CJ, Liu ZH, Zhou XF (2000) Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents. Eur J Neurosci 12(12):4171–4180. https://doi.org/10.1111/j.1460-9568.2000.01312.x

    Article  CAS  PubMed  Google Scholar 

  56. Fontana X, Hristova M, Da Costa C, Patodia S, Thei L, Makwana M, Spencer-Dene B, Latouche M, Mirsky R, Jessen KR, Klein R, Raivich G, Behrens A (2012) c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J Cell Biol 198(1):127–141. https://doi.org/10.1083/jcb.201205025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brushart TM, Aspalter M, Griffin JW, Redett R, Hameed H, Zhou C, Wright M, Vyas A, Hoke A (2013) Schwann cell phenotype is regulated by axon modality and central-peripheral location, and persists in vitro. Exp Neurol 247:272–281. https://doi.org/10.1016/j.expneurol.2013.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tofaris GK, Patterson PH, Jessen KR, Mirsky R (2002) Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J Neurosci 22(15):6696–6703

    Article  CAS  Google Scholar 

  59. Parfejevs V, Debbache J, Shakhova O, Schaefer SM, Glausch M, Wegner M, Suter U, Riekstina U, Werner S, Sommer L (2018) Injury-activated glial cells promote wound healing of the adult skin in mice. Nat Commun 9(1):236. https://doi.org/10.1038/s41467-017-01488-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gomez-Sanchez JA, Carty L, Iruarrizaga-Lejarreta M, Palomo-Irigoyen M, Varela-Rey M, Griffith M, Hantke J, Macias-Camara N, Azkargorta M, Aurrekoetxea I, De Juan VG, Jefferies HB, Aspichueta P, Elortza F, Aransay AM, Martinez-Chantar ML, Baas F, Mato JM, Mirsky R, Woodhoo A, Jessen KR (2015) Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J Cell Biol 210(1):153–168. https://doi.org/10.1083/jcb.201503019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jang SY, Shin YK, Park SY, Park JY, Lee HJ, Yoo YH, Kim JK, Park HT (2016) Autophagic myelin destruction by Schwann cells during Wallerian degeneration and segmental demyelination. Glia 64(5):730–742. https://doi.org/10.1002/glia.22957

    Article  PubMed  Google Scholar 

  62. Kim S, Maynard JC, Strickland A, Burlingame AL, Milbrandt J (2018) Schwann cell O-GlcNAcylation promotes peripheral nerve remyelination via attenuation of the AP-1 transcription factor JUN. Proc Natl Acad Sci USA 115(31):8019–8024. https://doi.org/10.1073/pnas.1805538115

    Article  CAS  PubMed  Google Scholar 

  63. Korimova A, Klusakova I, Hradilova-Svizenska I, Kohoutkova M, Joukal M, Dubovy P (2018) Mitochondrial damage-associated molecular patterns of injured axons induce outgrowth of schwann cell processes. Front Cell Neurosci 12:457. https://doi.org/10.3389/fncel.2018.00457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen G, Luo X, Wang W, Wang Y, Zhu F, Wang W (2019) Interleukin-1beta promotes schwann cells de-differentiation in Wallerian degeneration via the c-JUN/AP-1 pathway. Front Cell Neurosci 13:304. https://doi.org/10.3389/fncel.2019.00304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fazal SV, Gomez-Sanchez JA, Wagstaff LJ, Musner N, Otto G, Janz M, Mirsky R, Jessen KR (2017) Graded elevation of c-Jun in schwann cells in vivo: gene dosage determines effects on development, remyelination, tumorigenesis, and hypomyelination. J Neurosci 37(50):12297–12313. https://doi.org/10.1523/jneurosci.0986-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L, Behrens A, Mirsky R, Jessen KR (2008) c-Jun is a negative regulator of myelination. J Cell Biol 181(4):625–637. https://doi.org/10.1083/jcb.200803013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mindos T, Dun XP, North K, Doddrell RD, Schulz A, Edwards P, Russell J, Gray B, Roberts SL, Shivane A, Mortimer G, Pirie M, Zhang N, Pan D, Morrison H, Parkinson DB (2017) Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol 216(2):495–510. https://doi.org/10.1083/jcb.201606052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ma KH, Hung HA, Svaren J (2016) Epigenomic regulation of schwann cell reprogramming in peripheral nerve injury. J Neurosci 36(35):9135–9147. https://doi.org/10.1523/jneurosci.1370-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hung HA, Sun G, Keles S, Svaren J (2015) Dynamic regulation of Schwann cell enhancers after peripheral nerve injury. J Biol Chem 290(11):6937–6950. https://doi.org/10.1074/jbc.M114.622878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Benito C, Davis CM, Gomez-Sanchez JA, Turmaine M, Meijer D, Poli V, Mirsky R, Jessen KR (2017) STAT3 controls the long-term survival and phenotype of repair schwann cells during nerve regeneration. J Neurosci 37(16):4255–4269. https://doi.org/10.1523/jneurosci.3481-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Eggers R, Tannemaat MR, Ehlert EM, Verhaagen J (2010) A spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression after lumbar ventral root avulsion and implantation. Exp Neurol 223(1):207–220. https://doi.org/10.1016/j.expneurol.2009.07.021

    Article  CAS  PubMed  Google Scholar 

  72. Weinberg HJ, Spencer PS (1978) The fate of Schwann cells isolated from axonal contact. J Neurocytol 7(5):555–569

    Article  CAS  Google Scholar 

  73. Lee HK, Jung J, Lee SH, Seo SY, Suh DJ, Park HT (2009) Extracellular signal-regulated kinase activation is required for serine 727 phosphorylation of STAT3 in Schwann cells in vitro and in vivo. Korean J Physiol Pharmacol 13(3):161–168. https://doi.org/10.4196/kjpp.2009.13.3.161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee HK, Seo IA, Suh DJ, Hong JI, Yoo YH, Park HT (2009) Interleukin-6 is required for the early induction of glial fibrillary acidic protein in Schwann cells during Wallerian degeneration. J Neurochem 108(3):776–786. https://doi.org/10.1111/j.1471-4159.2008.05826.x

    Article  CAS  PubMed  Google Scholar 

  75. Patchett AL, Wilson R, Charlesworth JC, Corcoran LM, Papenfuss AT, Lyons BA, Woods GM, Tovar C (2018) Transcriptome and proteome profiling reveals stress-induced expression signatures of imiquimod-treated Tasmanian devil facial tumor disease (DFTD) cells. Oncotarget 9(22):15895–15914. https://doi.org/10.18632/oncotarget.24634

    Article  PubMed  PubMed Central  Google Scholar 

  76. Patchett AL, Darby JM, Tovar C, Lyons AB, Woods GM (2016) The immunomodulatory small molecule imiquimod induces apoptosis in devil facial tumour cell lines. PLoS ONE 11(12):e0168068. https://doi.org/10.1371/journal.pone.0168068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pastushenko I, Blanpain C (2019) EMT transition states during tumor progression and metastasis. Trends Cell Biol 29(3):212–226. https://doi.org/10.1016/j.tcb.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  78. Aiello NM, Kang Y (2019) Context-dependent EMT programs in cancer metastasis. J Exp Med 216(5):1016–1026. https://doi.org/10.1084/jem.20181827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shurin GV, Kruglov O, Ding F, Lin Y, Hao X, Keskinov AA, You Z, Lokshin AE, LaFramboise WA, Falo LD Jr, Shurin MR, Bunimovich YL (2019) Melanoma-induced reprogramming of Schwann cell signaling aids tumor growth. Cancer Res 79(10):2736–2747. https://doi.org/10.1158/0008-5472.Can-18-3872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou Y, Shurin GV, Zhong H, Bunimovich YL, Han B, Shurin MR (2018) Schwann cells augment cell spreading and metastasis of lung cancer. Cancer Res 78(20):5927–5939. https://doi.org/10.1158/0008-5472.Can-18-1702

    Article  CAS  PubMed  Google Scholar 

  81. Choi K, Komurov K, Fletcher JS, Jousma E, Cancelas JA, Wu J, Ratner N (2017) An inflammatory gene signature distinguishes neurofibroma Schwann cells and macrophages from cells in the normal peripheral nervous system. Sci Rep 7:43315. https://doi.org/10.1038/srep43315

    Article  PubMed  PubMed Central  Google Scholar 

  82. Caldwell A, Coleby R, Tovar C, Stammnitz MR, Kwon YM, Owen RS, Tringides M, Murchison EP, Skjodt K, Thomas GJ, Kaufman J, Elliott T, Woods GM, Siddle HV (2018) The newly-arisen Devil facial tumour disease 2 (DFT2) reveals a mechanism for the emergence of a contagious cancer. Elife 7:e35314. https://doi.org/10.7554/eLife.35314

    Article  PubMed  PubMed Central  Google Scholar 

  83. Parkinson DB, Bhaskaran A, Droggiti A, Dickinson S, D'Antonio M, Mirsky R, Jessen KR (2004) Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death. J Cell Biol 164(3):385–394. https://doi.org/10.1083/jcb.200307132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM, Dewitt J, Gritsch S, Perez EM, Gonzalez Castro LN, Lan X, Druck N, Rodman C, Dionne D, Kaplan A, Bertalan MS, Small J, Pelton K, Becker S, Bonal D, Nguyen QD et al (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178(4):835–849.e821. https://doi.org/10.1016/j.cell.2019.06.024

    Article  CAS  PubMed  Google Scholar 

  85. Taylor RL, Zhang Y, Schoning JP, Deakin JE (2017) Identification of candidate genes for devil facial tumour disease tumourigenesis. Sci Rep 7(1):8761. https://doi.org/10.1038/s41598-017-08908-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang L, Zhang W, Li Y, Alvarez A, Li Z, Wang Y, Song L, Lv D, Nakano I, Hu B, Cheng SY, Feng H (2016) SHP-2-upregulated ZEB1 is important for PDGFRalpha-driven glioma epithelial-mesenchymal transition and invasion in mice and humans. Oncogene 35(43):5641–5652. https://doi.org/10.1038/onc.2016.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang J, Tian XJ, Zhang H, Teng Y, Li R, Bai F, Elankumaran S, Xing J (2014) TGF-beta-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci Signal 7(345):ra91. https://doi.org/10.1126/scisignal.2005304

    Article  CAS  PubMed  Google Scholar 

  88. Hong T, Watanabe K, Ta CH, Villarreal-Ponce A, Nie Q, Dai X (2015) An Ovol2-Zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states. PLoS Comput Biol 11(11):e1004569. https://doi.org/10.1371/journal.pcbi.1004569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, Van Keymeulen A, Brown D, Moers V, Lemaire S, De Clercq S, Minguijon E, Balsat C, Sokolow Y, Dubois C, De Cock F, Scozzaro S, Sopena F, Lanas A, D'Haene N, Salmon I, Marine JC, Voet T, Sotiropoulou PA, Blanpain C (2018) Identification of the tumour transition states occurring during EMT. Nature 556(7702):463–468. https://doi.org/10.1038/s41586-018-0040-3

    Article  CAS  PubMed  Google Scholar 

  90. Jolly MK, Tripathi SC, Jia D, Mooney SM, Celiktas M, Hanash SM, Mani SA, Pienta KJ, Ben-Jacob E, Levine H (2016) Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget 7(19):27067–27084. https://doi.org/10.18632/oncotarget.8166

    Article  PubMed  PubMed Central  Google Scholar 

  91. Aokage K, Ishii G, Ohtaki Y, Yamaguchi Y, Hishida T, Yoshida J, Nishimura M, Nagai K, Ochiai A (2011) Dynamic molecular changes associated with epithelial-mesenchymal transition and subsequent mesenchymal-epithelial transition in the early phase of metastatic tumor formation. Int J Cancer 128(7):1585–1595. https://doi.org/10.1002/ijc.25500

    Article  CAS  PubMed  Google Scholar 

  92. Hamilton G, Rath B (2017) Mesenchymal-epithelial transition and circulating tumor cells in small cell lung cancer. Adv Exp Med Biol 994:229–245. https://doi.org/10.1007/978-3-319-55947-6_12

    Article  CAS  PubMed  Google Scholar 

  93. Boos GS, Bassuino DM, Wurster F, Castro NB, Watanabe TT, Silva GS, Sonne L, Driemeier D (2015) Retrospective canine skin peripheral nerve sheath tumors data with emphasis on histologic, immunohistochemical and prognostic factors. Pesq Vet Bras 35(12):965–974. https://doi.org/10.1590/S0100-736X2015001200005

    Article  Google Scholar 

  94. Schoniger S, Valentine BA, Fernandez CJ, Summers BA (2011) Cutaneous schwannomas in 22 horses. Vet Pathol 48(2):433–442. https://doi.org/10.1177/0300985810377072

    Article  CAS  PubMed  Google Scholar 

  95. Stoica G, Tasca SI, Kim HT (2001) Point mutation of neu oncogene in animal peripheral nerve sheath tumors. Vet Pathol 38(6):679–688. https://doi.org/10.1354/vp.38-6-679

    Article  CAS  PubMed  Google Scholar 

  96. Fletcher CD, Bridge JA, Hogendoorn PC, Mertens F (2013) WHO Classification of tumours of soft tissue and bone. IARC Press, Lyon

    Google Scholar 

  97. De Luca-Johnson J, Kalof AN (2016) Peripheral nerve sheath tumors: an update and review of diagnostic challenges. Diagn Histopathol 22(11):447–457. https://doi.org/10.1016/j.mpdhp.2016.10.008

    Article  Google Scholar 

  98. Rodriguez FJ, Folpe AL, Giannini C, Perry A (2012) Pathology of peripheral nerve sheath tumors: diagnostic overview and update on selected diagnostic problems. Acta Neuropathol 123(3):295–319. https://doi.org/10.1007/s00401-012-0954-z

    Article  PubMed  PubMed Central  Google Scholar 

  99. Stucky CC, Johnson KN, Gray RJ, Pockaj BA, Ocal IT, Rose PS, Wasif N (2012) Malignant peripheral nerve sheath tumors (MPNST): the mayo clinic experience. Ann Surg Oncol 19(3):878–885. https://doi.org/10.1245/s10434-011-1978-7

    Article  PubMed  Google Scholar 

  100. Evans DG, Moran A, King A, Saeed S, Gurusinghe N, Ramsden R (2005) Incidence of vestibular schwannoma and neurofibromatosis 2 in the North West of England over a 10-year period: higher incidence than previously thought. Otol Neurotol 26(1):93–97

    Article  Google Scholar 

  101. Rouleau GA, Merel P, Lutchman M, Sanson M, Zucman J, Marineau C, Hoang-Xuan K, Demczuk S, Desmaze C, Plougastel B et al (1993) Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363(6429):515–521. https://doi.org/10.1038/363515a0

    Article  CAS  PubMed  Google Scholar 

  102. Zhang N, Bai H, David KK, Dong J, Zheng Y, Cai J, Giovannini M, Liu P, Anders RA, Pan D (2010) The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 19(1):27–38. https://doi.org/10.1016/j.devcel.2010.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C, Jafar-Nejad H, Halder G (2006) The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8(1):27–36. https://doi.org/10.1038/ncb1339

    Article  CAS  PubMed  Google Scholar 

  104. Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J, Wrana JL (2010) The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell 19(6):831–844. https://doi.org/10.1016/j.devcel.2010.11.012

    Article  CAS  PubMed  Google Scholar 

  105. Han Q, Lin X, Zhang X, Jiang G, Zhang Y, Miao Y, Rong X, Zheng X, Han Y, Han X, Wu J, Kremerskothen J, Wang E (2017) WWC3 regulates the Wnt and Hippo pathways via Dishevelled proteins and large tumour suppressor 1, to suppress lung cancer invasion and metastasis. J Pathol 242(4):435–447. https://doi.org/10.1002/path.4919

    Article  CAS  PubMed  Google Scholar 

  106. Krapivinsky G, Medina I, Krapivinsky L, Gapon S, Clapham DE (2004) SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation. Neuron 43(4):563–574. https://doi.org/10.1016/j.neuron.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  107. Piotrowski A, Xie J, Liu YF, Poplawski AB, Gomes AR, Madanecki P, Fu C, Crowley MR, Crossman DK, Armstrong L, Babovic-Vuksanovic D, Bergner A, Blakeley JO, Blumenthal AL, Daniels MS, Feit H, Gardner K, Hurst S, Kobelka C, Lee C, Nagy R, Rauen KA, Slopis JM, Suwannarat P, Westman JA et al (2014) Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas. Nat Genet 46(2):182–187. https://doi.org/10.1038/ng.2855

    Article  CAS  PubMed  Google Scholar 

  108. Hadfield KD, Newman WG, Bowers NL, Wallace A, Bolger C, Colley A, McCann E, Trump D, Prescott T, Evans DG (2008) Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis. J Med Genet 45(6):332–339. https://doi.org/10.1136/jmg.2007.056499

    Article  CAS  PubMed  Google Scholar 

  109. Bigenzahn JW, Collu GM, Kartnig F, Pieraks M, Vladimer GI, Heinz LX, Sedlyarov V, Schischlik F, Fauster A, Rebsamen M, Parapatics K, Blomen VA, Muller AC, Winter GE, Kralovics R, Brummelkamp TR, Mlodzik M, Superti-Furga G (2018) LZTR1 is a regulator of RAS ubiquitination and signaling. Science 362(6419):1171–1177. https://doi.org/10.1126/science.aap8210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM, Fountain JW, Brereton A, Nicholson J, Mitchell AL et al (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249(4965):181–186. https://doi.org/10.1126/science.2134734

    Article  CAS  PubMed  Google Scholar 

  111. Uusitalo E, Rantanen M, Kallionpaa RA, Poyhonen M, Leppavirta J, Yla-Outinen H, Riccardi VM, Pukkala E, Pitkaniemi J, Peltonen S, Peltonen J (2016) Distinctive cancer associations in patients with neurofibromatosis type 1. J Clin Oncol 34(17):1978–1986. https://doi.org/10.1200/jco.2015.65.3576

    Article  PubMed  Google Scholar 

  112. Torres KE, Liu J, Young E, Huang KL, Ghadimi M, Lusby K, Lazar AJ, Lev D (2011) Expression of 'drugable' tyrosine kinase receptors in malignant peripheral nerve sheath tumour: potential molecular therapeutic targets for a chemoresistant cancer. Histopathology 59(1):156–159. https://doi.org/10.1111/j.1365-2559.2011.03867.x

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ki DH, He S, Rodig S, Look AT (2017) Overexpression of PDGFRA cooperates with loss of NF1 and p53 to accelerate the molecular pathogenesis of malignant peripheral nerve sheath tumors. Oncogene 36(8):1058–1068. https://doi.org/10.1038/onc.2016.269

    Article  CAS  PubMed  Google Scholar 

  114. Tabone-Eglinger S, Bahleda R, Cote JF, Terrier P, Vidaud D, Cayre A, Beauchet A, Theou-Anton N, Terrier-Lacombe MJ, Lemoine A, Penault-Llorca F, Le Cesne A, Emile JF (2008) Frequent EGFR positivity and overexpression in high-grade areas of human MPNSTs. Sarcoma 2008:849156. https://doi.org/10.1155/2008/849156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nielsen GP, Stemmer-Rachamimov AO, Ino Y, Moller MB, Rosenberg AE, Louis DN (1999) Malignant transformation of neurofibromas in neurofibromatosis 1 is associated with CDKN2A/p16 inactivation. Am J Pathol 155(6):1879–1884. https://doi.org/10.1016/s0002-9440(10)65507-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Brohl AS, Kahen E, Yoder SJ, Teer JK, Reed DR (2017) The genomic landscape of malignant peripheral nerve sheath tumors: diverse drivers of Ras pathway activation. Sci Rep 7(1):14992. https://doi.org/10.1038/s41598-017-15183-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Menon AG, Anderson KM, Riccardi VM, Chung RY, Whaley JM, Yandell DW, Farmer GE, Freiman RN, Lee JK, Li FP (1990) Chromosome 17p deletions and p53 gene mutations associated with the formation of malignant neurofibrosarcomas in von Recklinghausen neurofibromatosis. Proc Natl Acad Sci USA 87(14):5435–5439. https://doi.org/10.1073/pnas.87.14.5435

    Article  CAS  PubMed  Google Scholar 

  118. Eckert JM, Byer SJ, Clodfelder-Miller BJ, Carroll SL (2009) Neuregulin-1 beta and neuregulin-1 alpha differentially affect the migration and invasion of malignant peripheral nerve sheath tumor cells. Glia 57(14):1501–1520. https://doi.org/10.1002/glia.20866

    Article  PubMed  PubMed Central  Google Scholar 

  119. Perrone F, Da Riva L, Orsenigo M, Losa M, Jocolle G, Millefanti C, Pastore E, Gronchi A, Pierotti MA, Pilotti S (2009) PDGFRA, PDGFRB, EGFR, and downstream signaling activation in malignant peripheral nerve sheath tumor. Neuro Oncol 11(6):725–736. https://doi.org/10.1215/15228517-2009-003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stonecypher MS, Byer SJ, Grizzle WE, Carroll SL (2005) Activation of the neuregulin-1/ErbB signaling pathway promotes the proliferation of neoplastic Schwann cells in human malignant peripheral nerve sheath tumors. Oncogene 24(36):5589–5605. https://doi.org/10.1038/sj.onc.1208730

    Article  CAS  PubMed  Google Scholar 

  121. Aoki M, Nabeshima K, Koga K, Hamasaki M, Suzumiya J, Tamura K, Iwasaki H (2007) Imatinib mesylate inhibits cell invasion of malignant peripheral nerve sheath tumor induced by platelet-derived growth factor-BB. Lab Invest 87(8):767–779. https://doi.org/10.1038/labinvest.3700591

    Article  CAS  PubMed  Google Scholar 

  122. Smoot RL, Werneburg NW, Sugihara T, Hernandez MC, Yang L, Mehner C, Graham RP, Bronk SF, Truty MJ, Gores GJ (2018) Platelet-derived growth factor regulates YAP transcriptional activity via Src family kinase dependent tyrosine phosphorylation. J Cell Biochem 119(1):824–836. https://doi.org/10.1002/jcb.26246

    Article  CAS  PubMed  Google Scholar 

  123. He C, Lv X, Hua G, Lele SM, Remmenga S, Dong J, Davis JS, Wang C (2015) YAP forms autocrine loops with the ERBB pathway to regulate ovarian cancer initiation and progression. Oncogene 34(50):6040–6054. https://doi.org/10.1038/onc.2015.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Satoh T, Fantl WJ, Escobedo JA, Williams LT, Kaziro Y (1993) Platelet-derived growth factor receptor mediates activation of ras through different signaling pathways in different cell types. Mol Cell Biol 13(6):3706–3713. https://doi.org/10.1128/mcb.13.6.3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Goodearl A, Viehover A, Vartanian T (2001) Neuregulin-induced association of Sos Ras exchange protein with HER2(erbB2)/HER3(erbB3) receptor complexes in Schwann cells through a specific Grb2-HER2(erbB2) interaction. Dev Neurosci 23(1):25–30. https://doi.org/10.1159/000048693

    Article  CAS  PubMed  Google Scholar 

  126. Wu LMN, Deng Y, Wang J, Zhao C, Wang J, Rao R, Xu L, Zhou W, Choi K, Rizvi TA, Remke M, Rubin JB, Johnson RL, Carroll TJ, Stemmer-Rachamimov AO, Wu J, Zheng Y, Xin M, Ratner N, Lu QR (2018) Programming of Schwann cells by Lats1/2-TAZ/YAP signaling drives malignant peripheral nerve sheath tumorigenesis. Cancer Cell 33(2):292–308.e297. https://doi.org/10.1016/j.ccell.2018.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Boin A, Couvelard A, Couderc C, Brito I, Filipescu D, Kalamarides M, Bedossa P, De Koning L, Danelsky C, Dubois T, Hupe P, Louvard D, Lallemand D (2014) Proteomic screening identifies a YAP-driven signaling network linked to tumor cell proliferation in human schwannomas. Neuro Oncol 16(9):1196–1209. https://doi.org/10.1093/neuonc/nou020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Strano S, Monti O, Pediconi N, Baccarini A, Fontemaggi G, Lapi E, Mantovani F, Damalas A, Citro G, Sacchi A, Del Sal G, Levrero M, Blandino G (2005) The transcriptional coactivator Yes-associated protein drives p73 gene-target specificity in response to DNA Damage. Mol Cell 18(4):447–459. https://doi.org/10.1016/j.molcel.2005.04.008

    Article  CAS  PubMed  Google Scholar 

  129. Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A, Oren M, Sudol M, Cesareni G, Blandino G (2001) Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem 276(18):15164–15173. https://doi.org/10.1074/jbc.M010484200

    Article  CAS  PubMed  Google Scholar 

  130. Zhang M, Wang Y, Jones S, Sausen M, McMahon K, Sharma R, Wang Q, Belzberg AJ, Chaichana K, Gallia GL, Gokaslan ZL, Riggins GJ, Wolinksy JP, Wood LD, Montgomery EA, Hruban RH, Kinzler KW, Papadopoulos N, Vogelstein B, Bettegowda C (2014) Somatic mutations of SUZ12 in malignant peripheral nerve sheath tumors. Nat Genet 46(11):1170–1172. https://doi.org/10.1038/ng.3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lee W, Teckie S, Wiesner T, Ran L, Prieto Granada CN, Lin M, Zhu S, Cao Z, Liang Y, Sboner A, Tap WD, Fletcher JA, Huberman KH, Qin LX, Viale A, Singer S, Zheng D, Berger MF, Chen Y, Antonescu CR, Chi P (2014) PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet 46(11):1227–1232. https://doi.org/10.1038/ng.3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Riising EM, Comet I, Leblanc B, Wu X, Johansen JV, Helin K (2014) Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol Cell 55(3):347–360. https://doi.org/10.1016/j.molcel.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  133. Wojcik JB, Marchione DM, Sidoli S, Djedid A, Lisby A, Majewski J, Garcia BA (2019) Epigenomic reordering induced by polycomb loss drives oncogenesis but leads to therapeutic vulnerabilities in malignant peripheral nerve sheath tumors. Cancer Res 79(13):3205–3219. https://doi.org/10.1158/0008-5472.Can-18-3704

    Article  CAS  PubMed  Google Scholar 

  134. Peck SJ, Michael SA, Knowles G, Davis A, Pemberton D (2019) Causes of mortality and severe morbidity requiring euthanasia in captive Tasmanian devils (Sarcophilus harrisii) in Tasmania. Aust Vet J 97(4):89–92. https://doi.org/10.1111/avj.12797

    Article  CAS  PubMed  Google Scholar 

  135. Abegglen LM, Caulin AF, Chan A, Lee K, Robinson R, Campbell MS, Kiso WK, Schmitt DL, Waddell PJ, Bhaskara S, Jensen ST, Maley CC, Schiffman JD (2015) Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. JAMA 314(17):1850–1860. https://doi.org/10.1001/jama.2015.13134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Griner LA (1979) Neoplasms in Tasmanian devils (Sarcophilus harrisii). J Natl Cancer Inst 62(3):589–595

    Article  CAS  Google Scholar 

  137. Bender HS, Murchison EP, Pickett HA, Deakin JE, Strong MA, Conlan C, McMillan DA, Neumann AA, Greider CW, Hannon GJ, Reddel RR, Graves JA (2012) Extreme telomere length dimorphism in the Tasmanian devil and related marsupials suggests parental control of telomere length. PLoS ONE 7(9):e46195. https://doi.org/10.1371/journal.pone.0046195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Stone WH, Brunn DA, Foster EB, Manis GS, Hoffman ES, Saphire DG, VandeBerg JL, Infante AJ (1998) Absence of a significant mixed lymphocyte reaction in a marsupial (Monodelphis domestica). Lab Anim Sci 48(2):184–189

    CAS  PubMed  Google Scholar 

  139. Wilkinson R, Kotlarski I, Barton M (1992) Koala lymphoid cells: analysis of antigen-specific responses. Vet Immunol Immunopathol 33(3):237–247. https://doi.org/10.1016/0165-2427(92)90184-R

    Article  CAS  PubMed  Google Scholar 

  140. Howson LJ, Morris KM, Kobayashi T, Tovar C, Kreiss A, Papenfuss AT, Corcoran L, Belov K, Woods GM (2014) Identification of dendritic cells, B cell and T cell subsets in Tasmanian devil lymphoid tissue; evidence for poor immune cell infiltration into devil facial tumors. Anat Rec (Hoboken) 297(5):925–938. https://doi.org/10.1002/ar.22904

    Article  CAS  Google Scholar 

  141. Woods GM, Kreiss A, Belov K, Siddle HV, Obendorf DL, Muller HK (2007) The immune response of the Tasmanian devil (Sarcophilus harrisii) and devil facial tumour disease. EcoHealth 4(3):338–345. https://doi.org/10.1007/s10393-007-0117-1

    Article  Google Scholar 

  142. Kreiss A, Fox N, Bergfeld J, Quinn SJ, Pyecroft S, Woods GM (2008) Assessment of cellular immune responses of healthy and diseased Tasmanian devils (Sarcophilus harrisii). Dev Comp Immunol 32(5):544–553. https://doi.org/10.1016/j.dci.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  143. Kreiss A, Wells B, Woods GM (2009) The humoral immune response of the Tasmanian devil (Sarcophilus harrisii) against horse red blood cells. Vet Immunol Immunopathol 130(1–2):135–137. https://doi.org/10.1016/j.vetimm.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  144. Patchett AL, Latham R, Brettingham-Moore KH, Tovar C, Lyons AB, Woods GM (2015) Toll-like receptor signaling is functional in immune cells of the endangered Tasmanian devil. Dev Comp Immunol 53(1):123–133. https://doi.org/10.1016/j.dci.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  145. Patchett AL, Tovar C, Corcoran LM, Lyons AB, Woods GM (2017) The toll-like receptor ligands Hiltonol((R)) (polyICLC) and imiquimod effectively activate antigen-specific immune responses in Tasmanian devils (Sarcophilus harrisii). Dev Comp Immunol 76:352–360. https://doi.org/10.1016/j.dci.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  146. Brown GK, Kreiss A, Lyons AB, Woods GM (2011) Natural killer cell mediated cytotoxic responses in the Tasmanian devil. PLoS ONE 6(9):e24475. https://doi.org/10.1371/journal.pone.0024475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Brown GK, Tovar C, Cooray AA, Kreiss A, Darby J, Murphy JM, Corcoran LM, Bettiol SS, Lyons AB, Woods GM (2016) Mitogen-activated Tasmanian devil blood mononuclear cells kill devil facial tumour disease cells. Immunol Cell Biol 94(7):673–679. https://doi.org/10.1038/icb.2016.38

    Article  CAS  PubMed  Google Scholar 

  148. Cheng Y, Makara M, Peel E, Fox S, Papenfuss AT, Belov K (2019) Tasmanian devils with contagious cancer exhibit a constricted T-cell repertoire diversity. Commun Biol 2:99. https://doi.org/10.1038/s42003-019-0342-5

    Article  PubMed  PubMed Central  Google Scholar 

  149. Cheng Y, Heasman K, Peck S, Peel E, Gooley RM, Papenfuss AT, Hogg CJ, Belov K (2017) Significant decline in anticancer immune capacity during puberty in the Tasmanian devil. Sci Rep 7:44716. https://doi.org/10.1038/srep44716

    Article  PubMed  PubMed Central  Google Scholar 

  150. Pye R, Hamede R, Siddle HV, Caldwell A, Knowles GW, Swift K, Kreiss A, Jones ME, Lyons AB, Woods GM (2016) Demonstration of immune responses against devil facial tumour disease in wild Tasmanian devils. Biol Lett. https://doi.org/10.1098/rsbl.2016.0553

    Article  PubMed  PubMed Central  Google Scholar 

  151. Margres MJ, Ruiz-Aravena M, Hamede R, Jones ME, Lawrance MF, Hendricks SA, Patton A, Davis BW, Ostrander EA, McCallum H, Hohenlohe PA, Storfer A (2018) The genomic basis of tumor regression in Tasmanian devils (Sarcophilus harrisii). Genome Biol Evol 10(11):3012–3025. https://doi.org/10.1093/gbe/evy229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tovar C, Pye RJ, Kreiss A, Cheng Y, Brown GK, Darby J, Malley RC, Siddle HV, Skjodt K, Kaufman J, Silva A, Baz Morelli A, Papenfuss AT, Corcoran LM, Murphy JM, Pearse MJ, Belov K, Lyons AB, Woods GM (2017) Regression of devil facial tumour disease following immunotherapy in immunised Tasmanian devils. Sci Rep 7:43827. https://doi.org/10.1038/srep43827

    Article  PubMed  PubMed Central  Google Scholar 

  153. Morris K, Belov K (2013) Does the devil facial tumour produce immunosuppressive cytokines as an immune evasion strategy? Vet Immunol Immunopathol 153(1–2):159–164. https://doi.org/10.1016/j.vetimm.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  154. Flies AS, Lyons AB, Corcoran LM, Papenfuss AT, Murphy JM, Knowles GW, Woods GM, Hayball JD (2016) PD-L1 is not constitutively expressed on Tasmanian devil facial tumor cells but is strongly upregulated in response to IFN-gamma and can be expressed in the tumor microenvironment. Front Immunol 7:581. https://doi.org/10.3389/fimmu.2016.00581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Flies AS, Blackburn NB, Lyons AB, Hayball JD, Woods GM (2017) Comparative analysis of immune checkpoint molecules and their potential role in the transmissible Tasmanian devil facial tumor disease. Front Immunol 8:513. https://doi.org/10.3389/fimmu.2017.00513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Morris K, Austin JJ, Belov K (2013) Low major histocompatibility complex diversity in the Tasmanian devil predates European settlement and may explain susceptibility to disease epidemics. Biol Lett 9(1):20120900. https://doi.org/10.1098/rsbl.2012.0900

    Article  PubMed  PubMed Central  Google Scholar 

  157. Bruniche-Olsen A, Jones ME, Austin JJ, Burridge CP, Holland BR (2014) Extensive population decline in the Tasmanian devil predates European settlement and devil facial tumour disease. Biol Lett 10(11):20140619. https://doi.org/10.1098/rsbl.2014.0619

    Article  PubMed  PubMed Central  Google Scholar 

  158. Miller W, Hayes VM, Ratan A, Petersen DC, Wittekindt NE, Miller J, Walenz B, Knight J, Qi J, Zhao F, Wang Q, Bedoya-Reina OC, Katiyar N, Tomsho LP, Kasson LM, Hardie RA, Woodbridge P, Tindall EA, Bertelsen MF, Dixon D, Pyecroft S, Helgen KM, Lesk AM, Pringle TH, Patterson N et al (2011) Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). Proc Natl Acad Sci USA 108(30):12348–12353. https://doi.org/10.1073/pnas.1102838108

    Article  PubMed  Google Scholar 

  159. Jones ME, Paetkau D, Geffen E, Moritz C (2004) Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Mol Ecol 13(8):2197–2209. https://doi.org/10.1111/j.1365-294X.2004.02239.x

    Article  CAS  PubMed  Google Scholar 

  160. Siddle HV, Marzec J, Cheng Y, Jones M, Belov K (2010) MHC gene copy number variation in Tasmanian devils: implications for the spread of a contagious cancer. Proc Biol Sci 277(1690):2001–2006. https://doi.org/10.1098/rspb.2009.2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. O'Brien SJ, Roelke ME, Marker L, Newman A, Winkler CA, Meltzer D, Colly L, Evermann JF, Bush M, Wildt DE (1985) Genetic basis for species vulnerability in the cheetah. Science 227(4693):1428–1434. https://doi.org/10.1126/science.2983425

    Article  CAS  PubMed  Google Scholar 

  162. Kreiss A, Cheng Y, Kimble F, Wells B, Donovan S, Belov K, Woods GM (2011) Allorecognition in the Tasmanian devil (Sarcophilus harrisii), an endangered marsupial species with limited genetic diversity. PLoS ONE 6(7):e22402. https://doi.org/10.1371/journal.pone.0022402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Cohen D, Shalev A, Krup M (1984) Lack of beta 2-microglobulin on the surface of canine transmissible venereal tumor cells. J Natl Cancer Inst 72(2):395–401

    CAS  PubMed  Google Scholar 

  164. Hsiao YW, Liao KW, Hung SW, Chu RM (2002) Effect of tumor infiltrating lymphocytes on the expression of MHC molecules in canine transmissible venereal tumor cells. Vet Immunol Immunopathol 87(1–2):19–27. https://doi.org/10.1016/S0165-2427(02)00026-0

    Article  CAS  PubMed  Google Scholar 

  165. Yang TJ, Chandler JP, Dunne-Anway S (1987) Growth stage dependent expression of MHC antigens on the canine transmissible venereal sarcoma. Br J Cancer 55(2):131–134. https://doi.org/10.1038/bjc.1987.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870. https://doi.org/10.1152/physrev.2003.83.3.835

    Article  CAS  PubMed  Google Scholar 

  167. Foster DS, Jones RE, Ransom RC, Longaker MT, Norton JA (2018) The evolving relationship of wound healing and tumor stroma. JCI Insight. https://doi.org/10.1172/jci.insight.99911

    Article  PubMed  PubMed Central  Google Scholar 

  168. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659. https://doi.org/10.1056/nejm198612253152606

    Article  CAS  PubMed  Google Scholar 

  169. Kuraishy A, Karin M, Grivennikov SI (2011) Tumor promotion via injury- and death-induced inflammation. Immunity 35(4):467–477. https://doi.org/10.1016/j.immuni.2011.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pickup M, Novitskiy S, Moses HL (2013) The roles of TGFbeta in the tumour microenvironment. Nat Rev Cancer 13(11):788–799. https://doi.org/10.1038/nrc3603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30(7):1073–1081. https://doi.org/10.1093/carcin/bgp127

    Article  CAS  PubMed  Google Scholar 

  172. Ujvari B, Gatenby RA, Thomas F (2016) The evolutionary ecology of transmissible cancers. Infect Genet Evol 39:293–303. https://doi.org/10.1016/j.meegid.2016.02.005

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Narelle Phillips for immunohistochemistry, Karsten Goemann for scanning electron microscopy and Jocelyn Darby, Ruth Pye and Cesar Tovar for useful discussion. Research support was provided by the Australian Research Council (DP130100715, DE180100484, DP180100520) and the University of Tasmania Foundation through funds raised by the Save the Tasmanian Devil Appeal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory M. Woods.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patchett, A.L., Flies, A.S., Lyons, A.B. et al. Curse of the devil: molecular insights into the emergence of transmissible cancers in the Tasmanian devil (Sarcophilus harrisii). Cell. Mol. Life Sci. 77, 2507–2525 (2020). https://doi.org/10.1007/s00018-019-03435-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03435-4

Keywords

Navigation