Skip to main content

Advertisement

Log in

Potential of Raman spectroscopy for the analysis of plasma/serum in the liquid state: recent advances

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

There is compelling evidence in the literature to support the application of Raman spectroscopy for analysis of bodily fluids in their native liquid state. Naturally, the strategies described in the literature for Raman spectroscopic analysis of liquid samples have advantages and disadvantages. Herein, recent advances in the analysis of plasma/serum in the liquid state are reviewed. The potential advantages of Raman analysis in the liquid form over the commonly employed infrared absorption analysis in the dried droplet form are initially highlighted. Improvements in measurement protocols based on inverted microscopic geometries, clinically adaptable substrates, data preprocessing and analysis and applications for routine monitoring of patient health as well as therapeutic administration are reviewed. These advances suggest that clinical translation of Raman spectroscopy for rapid biochemical analysis can be a reality. In the future, this method will prove to be highly beneficial to clinicians for rapid screening and monitoring of analytes and drugs in the biological fluids, and to the patients themselves, enabling early treatment, before the disease becomes symptomatic, allowing early recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hughes C, Brown M, Clemens G, Henderson A, Monjardez G, Clarke NW, et al. Assessing the challenges of Fourier transform infrared spectroscopic analysis of blood serum. J Biophotonics. 2014;7:180–8. https://doi.org/10.1002/jbio.201300167.

    Article  CAS  PubMed  Google Scholar 

  2. Baker MJ, Hughes CS, Hollywood KA. Biophotonics: vibrational spectroscopic diagnostics: Morgan & Claypool Publishers; 2016.

  3. Baker MJ, Hussain SR, Lovergne L, Untereiner V, Hughes C, Lukaszewski RA, et al. Developing and understanding biofluid vibrational spectroscopy: a critical review. Chem Soc Rev. 2015;45:1803–18. https://doi.org/10.1039/c5cs00585j.

    Article  CAS  PubMed  Google Scholar 

  4. Hughes C, Baker MJ. Can mid-infrared biomedical spectroscopy of cells, fluids and tissue aid improvements in cancer survival? A patient paradigm. Analyst. 2016;141:467–75.

    Article  CAS  Google Scholar 

  5. Kong K, Kendall C, Stone N, Notingher I. Raman spectroscopy for medical diagnostics - from in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev. 2015;89.

  6. Bunaciu AA, Fleschin Ş, Hoang VD, Aboul-Enein HY. Vibrational spectroscopy in body fluids analysis. Crit Rev Anal Chem. 2017;47:67–75. https://doi.org/10.1080/10408347.2016.1209104.

    Article  CAS  PubMed  Google Scholar 

  7. Shaw RA, Low-Ying S, Man A, Liu K-Z, Mansfield C, Rileg CB, et al. Infrared spectroscopy of biofluids in clinical chemistry and medical diagnostics. In: Biomedical vibrational spectroscopy. Inc.: John Wiley & Sons; 2007. p. 79–103.

    Google Scholar 

  8. Byrne HJ, Baranska M, Puppels GJ, Stone N, Wood B, Gough KM, et al. Spectropathology for the next generation: quo vadis? Analyst. 2015;140:2066–73. https://doi.org/10.1039/c4an02036g.

    Article  CAS  PubMed  Google Scholar 

  9. Mitchell AL, Gajjar KB, Theophilou G, Martin FL, Martin-Hirsch PL. Vibrational spectroscopy of biofluids for disease screening or diagnosis: translation from the laboratory to a clinical setting. J Biophotonics. 2014;7:153–65. https://doi.org/10.1002/jbio.201400018.

    Article  CAS  PubMed  Google Scholar 

  10. Eberhardt K, Stiebing C, Matthäus C, Schmitt M, Popp J. Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Rev Mol Diagn. 2015;15:773–87. https://doi.org/10.1586/14737159.2015.1036744.

    Article  CAS  PubMed  Google Scholar 

  11. Roy S, Perez-Guaita D, Andrew DW, Richards JS, McNaughton D, Heraud P, et al. Simultaneous ATR-FTIR based determination of malaria parasitemia, glucose and urea in whole blood dried onto a glass slide. Anal Chem. 2017;89:5238–45. https://doi.org/10.1021/acs.analchem.6b04578.

    Article  CAS  PubMed  Google Scholar 

  12. Perez-Guaita D, Ventura-Gayete J, Pérez-Rambla C, Sancho-Andreu M, Garrigues S, De La Guardia M. Protein determination in serum and whole blood by attenuated total reflectance infrared spectroscopy. Anal Bioanal Chem. 2012;404:649–56. https://doi.org/10.1007/s00216-012-6030-7.

    Article  CAS  PubMed  Google Scholar 

  13. Spalding K, Bonnier F, Bruno C, Blasco H, Board R, Benz-de Bretagne I, et al. Enabling quantification of protein concentration in human serum biopsies using attenuated total reflectance – Fourier transform infrared (ATR-FTIR) spectroscopy. Vib Spectrosc. 2018;99:50–8. https://doi.org/10.1016/j.vibspec.2018.08.019.

    Article  CAS  Google Scholar 

  14. Paraskevaidi M, Morais CLM, Lima KMG, Snowden JS, Saxon JA, Richardson AMT, et al. Differential diagnosis of Alzheimer’s disease using spectrochemical analysis of blood. Proc Natl Acad Sci U S A. 2017;114:E7929–38. https://doi.org/10.1073/pnas.1701517114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang J, Tan X, Shih WC, Cheng MMC. A sandwich substrate for ultrasensitive and label-free SERS spectroscopic detection of folic acid / methotrexate. Biomed Microdevices. 2014;16:673–9. https://doi.org/10.1007/s10544-014-9871-3.

    Article  CAS  PubMed  Google Scholar 

  16. Fornasaro S, Marta D, Rabusin M. Toward SERS-based point-of-care approaches for therapeutic drug monitoring : the case of methotrexate. Faraday Discuss. 2016;00:1–15. https://doi.org/10.1039/C5FD00173K.

    Article  Google Scholar 

  17. Panikar SS, Ramírez-García G, Sidhik S, Lopez-Luke T, Rodriguez-Gonzalez C, Ciapara IH, et al. Ultrasensitive SERS substrate for label-free therapeutic-drug monitoring of paclitaxel and cyclophosphamide in blood serum. Anal Chem. 2019;91:2100–11. https://doi.org/10.1021/acs.analchem.8b04523.

    Article  CAS  PubMed  Google Scholar 

  18. Hands JR, Abel P, Ashton K, Dawson T, Davis C, Lea RW, et al. Investigating the rapid diagnosis of gliomas from serum samples using infrared spectroscopy and cytokine and angiogenesis factors. Anal Bioanal Chem. 2013;405:7347–55. https://doi.org/10.1007/s00216-013-7163-z.

    Article  CAS  PubMed  Google Scholar 

  19. Cameron JM, Butler HJ, Palmer DS, Baker MJ. Biofluid spectroscopic disease diagnostics: a review on the processes and spectral impact of drying. J Biophotonics. 2018;11:1–12. https://doi.org/10.1002/jbio.201700299.

    Article  Google Scholar 

  20. Lord RC, Yu NT. Laser-excited Raman spectroscopy of biomolecules. I Native lysozyme and its constituent amino acids. J Mol Biol. 1970;50:509–24.

    Article  CAS  Google Scholar 

  21. Tobin MC. Raman spectra of crystalline lysozyme, pepsin, and alpha chymotrypsin. Science. 1968;161:68–9.

    Article  CAS  Google Scholar 

  22. Walton AG, Deveney MJ, Koenig JL. Raman spectroscopy of calcified tissue. Calcif Tissue Res. 1970;6:162–7.

    Article  CAS  Google Scholar 

  23. Gniadecka M, Wulf HC, Nielsen OF, Christensen DH, Hercogova J. Distinctive molecular abnormalities in benign and malignant skin lesions: studies by Raman spectroscopy. Photochem Photobiol. 1997;66:418–23.

    Article  CAS  Google Scholar 

  24. Breve GJP and J (1986) R. J. H. Clark and R. E. Hester (Editors). Advances in infrared and Raman spectroscopy, vol. 12. Wiley, New York. 1985. J Raman Spectrosc 17:487 . https://doi.org/10.1002/jrs.1250170613.

  25. Smith J, Kendall C, Sammon A, Christie-Brown J, Stone N. Raman spectral mapping in the assessment of axillary lymph nodes in breast cancer. Technol Cancer Res Treat. 2003;2:327–32. https://doi.org/10.1177/153303460300200407.

    Article  CAS  PubMed  Google Scholar 

  26. Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, et al. Prospects for in vivo Raman spectroscopy. Phys Med Biol. 2000;45:R1–59.

    Article  CAS  Google Scholar 

  27. Caspers PJ, Lucassen GW, Wolthuis R, Bruining HA, Puppels GJ. In vitro and in vivo Raman spectroscopy of human skin. Biospectroscopy. 1998;4:S31–9. https://doi.org/10.1002/(sici)1520-6343(1998)4:5+<s31::aid-bspy4>3.0.co;2-m.

    Article  CAS  PubMed  Google Scholar 

  28. Berger AJ, Koo T-W, Itzkan I, Horowitz G, Feld MS. Multicomponent blood analysis by near-infrared Raman spectroscopy. Appl Opt. 1999;38:2916. https://doi.org/10.1364/ao.38.002916.

    Article  CAS  PubMed  Google Scholar 

  29. Jenkins CA, Jenkins RA, Pryse MM, Welsby KA, Jitsumura M, Thornton CA, et al. A high-throughput serum Raman spectroscopy platform and methodology for colorectal cancer diagnostics. Analyst. 2018;143:6014–24. https://doi.org/10.1039/c8an01323c.

    Article  CAS  PubMed  Google Scholar 

  30. Depciuch J, Sowa-kucma M, Nowak G, Papp M, Gruca P, Misztak P, et al. Spectrochimica Acta part a : molecular and biomolecular spectroscopy qualitative and quantitative changes in phospholipids and proteins investigated by spectroscopic techniques in animal depression model. Spectrochim Acta Part A Mol Biomol Spectrosc. 2017;176:30–7. https://doi.org/10.1016/j.saa.2016.12.007.

    Article  CAS  Google Scholar 

  31. Depciuch J, Nowak G, Szewczyk B, Doboszewska U. ScienceDirect the role of zinc deficiency-induced changes in the phospholipid-protein balance of blood serum in animal depression model by Raman. FTIR and UV – vis spectroscopy. 2020;89:549–58. https://doi.org/10.1016/j.biopha.2017.01.180.

    Article  CAS  Google Scholar 

  32. Depciuch J, Sowa-ku M, Nowak G, Dudek D, Parli M. Journal of pharmaceutical and biomedical analysis phospholipid-protein balance in affective disorders : analysis of human blood serum using Raman and FTIR spectroscopy. A pilot study. 2016;131:287–96. https://doi.org/10.1016/j.jpba.2016.08.037.

    Article  CAS  Google Scholar 

  33. Depciuch J, Parlinska-Wojtan M. Comparing dried and liquid blood serum samples of depressed patients: an analysis by Raman and infrared spectroscopy methods. J Pharm Biomed Anal. 2018;150:80–6. https://doi.org/10.1016/j.jpba.2017.11.074.

    Article  CAS  PubMed  Google Scholar 

  34. Sato-Berrú RY, Araiza-Reyna EA, Vazquéz-Olmos AR. Moles quantification in liquid samples by Raman spectroscopy. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2016;158:56–9. https://doi.org/10.1016/j.saa.2016.01.017.

    Article  CAS  Google Scholar 

  35. Liu Z, Fan S, Liu H, Yu J, Qiao R, Zhou M, et al. Enhanced detection of low-abundance human plasma proteins by integrating polyethylene glycol fractionation and immunoaffinity depletion. PLoS One. 2016;11:1–17. https://doi.org/10.1371/journal.pone.0166306.

    Article  Google Scholar 

  36. Rohleder D, Kocherscheidt G, Gerber K, Kiefer W, Kohler W, Mocks J, et al. Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum. J Biomed Opt. 2005;10:31108. https://doi.org/10.1117/1.1911847.

    Article  CAS  Google Scholar 

  37. Rohleder D, Kiefer W, Petrich W. Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy. Analyst. 2004;129:906–11. https://doi.org/10.1039/b408927h.

    Article  CAS  PubMed  Google Scholar 

  38. Kiefer W, Laane J. Analytical applications of FT-IR to molecular and biological systems. Dordrecht: Springer Netherlands; 1980.

    Google Scholar 

  39. Bonnier F, Brachet G, Duong R, Sojinrin T, Respaud R, Aubrey N, et al. Screening the low molecular weight fraction of human serum using ATR-IR spectroscopy. J Biophotonics. 2016;9:1085–97. https://doi.org/10.1002/jbio.201600015.

    Article  CAS  PubMed  Google Scholar 

  40. Bonnier F, Blasco H, Wasselet C, Brachet G, Respaud R, Carvalho LFCS, et al. Ultra-filtration of human serum for improved quantitative analysis of low molecular weight biomarkers using ATR-IR spectroscopy. Analyst. 2017;142:1285–98. https://doi.org/10.1039/c6an01888b.

    Article  CAS  PubMed  Google Scholar 

  41. Smith E, Dent G. The Raman experiment – Raman instrumentation, sample presentation, data handling and practical aspects of interpretation. In: Modern Raman spectroscopy – a practical approach. Ltd: John Wiley & Sons; 2004. p. 23–70.

    Chapter  Google Scholar 

  42. Gerrard DL, Birnie J. Raman spectroscopy. Anal Chem. 1990;62:44–50. https://doi.org/10.1021/ac00211a004.

    Article  Google Scholar 

  43. Parachalil DR, Bruno C, Bonnier F, Blasco H, Chourpa I, Baker MJ, et al. Analysis of bodily fluids using vibrational spectroscopy: a direct comparison of Raman scattering and infrared absorption techniques for the case of glucose in blood serum. Analyst. 2019;144:3334–46. https://doi.org/10.1039/c9an00125e.

    Article  CAS  PubMed  Google Scholar 

  44. Parachalil DR, Brankin B, McIntyre J, Byrne HJ. Raman spectroscopic analysis of high molecular weight proteins in solution – considerations for sample analysis and data pre-processing. Analyst. 2018;143:5987–98. https://doi.org/10.1039/C8AN01701H.

    Article  CAS  PubMed  Google Scholar 

  45. Leal LB, Nogueira MS, Canevari RA, Carvalho LFCS. Vibration spectroscopy and body biofluids: literature review for clinical applications. Photodiagn Photodyn Ther. 2018;24:237–44.

    Article  CAS  Google Scholar 

  46. Zhao Y, Ji N, Yin L, Wang J (2015) Research Article A Non-invasive Method for the Determination of Liquid Injectables by Raman Spectroscopy 16:914–921 . https://doi.org/10.1208/s12249-015-0286-0.

  47. Shaw RA, Kotowich S, Leroux M, Mantsch HH. Multianalyte serum analysis using mid-infrared spectroscopy. Ann Clin Biochem. 1998;35:624–32. https://doi.org/10.1177/000456329803500505.

    Article  CAS  PubMed  Google Scholar 

  48. Chitsaz A, Mousavi SA, Yousef Y, Mostafa V. Comparison of changes in serum fibrinogen level in primary intracranial hemorrhage (ICH) and ischemic stroke. ARYA Atheroscler. 2012;7:142–5.

    PubMed  PubMed Central  Google Scholar 

  49. Kerr LT, Byrne HJ, Hennelly BM. Optimal choice of sample substrate and laser wavelength for Raman spectroscopic analysis of biological specimen. Anal Methods. 2015;7:5041–52. https://doi.org/10.1039/C5AY00327J.

    Article  CAS  Google Scholar 

  50. Fullwood LM, Griffiths D, Ashton K, Dawson T, Lea RW, Davis C, et al. Effect of substrate choice and tissue type on tissue preparation for spectral histopathology by Raman microspectroscopy. Analyst. 2014;139:446–54. https://doi.org/10.1039/c3an01832f.

    Article  CAS  PubMed  Google Scholar 

  51. Medipally DKR, Maguire A, Bryant J, Armstrong J, Dunne M, Finn M, et al. Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients. Analyst. 2017;142:1216–26. https://doi.org/10.1039/C6AN02100J.

    Article  CAS  PubMed  Google Scholar 

  52. Nabers A, Perna L, Lange J, Mons U, Schartner J, Güldenhaupt J, et al. Amyloid blood biomarker detects Alzheimer’s disease. EMBO Mol Med. 2018;10:1–11. https://doi.org/10.15252/emmm.201708763.

    Article  CAS  Google Scholar 

  53. Akao Y, Nakagawa Y, Hirata I, Iio A, Itoh T, Kojima K, Nakashima R, Kitade Y, Naoe T, Balzar M, Winter MJ, de Boer CJ, Litvinov SV, Barnard F, Chen Y, Zhang H, Gou X, Horikawa Y, Xing JJ-L, Chen ZZ-NNZZ-N, Fassan M, Pizzi M, Giacomelli L, Mescoli C, Ludwig K, Pucciarelli S, Rugge M, Fong D, Seeber A, Terracciano L, Kasal A, Mazzoleni G, Lehne F, Gastl G, Spizzo G, Gaiser MR, Lammermann T, Feng X, Igyarto BZ, Kaplan DH, Tessarollo L, Germain RN, Udey MC, Gires O, Stoecklein NH, Goossens-Beumer IJ, Zeestraten ECM, Benard A, Christen T, Reimers MS, Keijzer R, Sier CFM, Liefers GJ, Morreau H, Putter H, Vahrmeijer a L, van de Velde CJH, Kuppen PJK, Hofsli E, Sjursen W, Prestvik WS, Johansen J, Rye M, Tranø G, Wasmuth HH, Hatlevoll I, Thommesen L, Holla VR, Backlund MG, Yang P, Newman R a., DuBois RN, Hong IK, Jin YJ, Byun HJ, Jeoung D Il, Kim YM, Lee HH, Huang ZZ, Huang D, Ni S, Peng Z, Sheng W, Du X, Ke X, Li L, Dong HL, Chen ZZ-NNZZ-N, Keller S, König AK, Marmé F, Runz S, Wolterink S, Koensgen D, Mustea A, Sehouli J, Altevogt P, Kuhn S, Koch M, Nübel T, Ladwein M, Antolovic D, Klingbeil P, Hildebrand D, Moldenhauer G, Langbein L, Franke WW, Weitz J, Zöller M, Li L, Tang W, Wu X, Karnak D, Meng X, Thompson R, Hao X, Li YYY, Qiao XT, Lin JJJ, Fuchs J, Simeone DM, Chen ZZ-NNZZ-N, Lawrence TS, Xu L, Xu J, Chen L, Zhong W De, Zhang Z, Mi L, Zhang Y, Liao CG, Bian HJ, Jiang J-LJ-LJL, Yang X-MM, Li XY, Fan CM, Zhu P, Fu L, Chen ZZ-NNZZ-N, Lin JJJ, Li J, Huang B, Liu J, Chen XX, Chen XX, Xu Y, Huang L, Wang XX, Lin P-C, Lin S-C, Lee C-T, Lin Y-J, Lee J-C, Luo X, Stock C, Burwinkel B, Brenner H, Oberg AL, French AJ, Sarver AL, Subramanian S, Morlan BW, Riska SM, Borralho PM, Cunningham JM, Boardman L a., Wang LLLL, Smyrk TC, Asmann Y, Steer CJ, Thibodeau SN, Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K, Gunji T, Ohta H, Okamoto H, Sonoda H, Watanabe M, Nakagama H, Yokota J, Kohno T, Tsuchiya N, Ragusa M, Statello L, Maugeri M, Barbagallo C, Alhamdani MS, Destri GL, Cappellani A, Purrello M, Ralhan R, He HCH, So AKC, Tripathi SC, Kumar M, Hasan MR, Kaur J, Kashat L, Macmillan C, Chauhan SS, Freeman JL, Walfish PG, Runz S, Keller S, Rupp C, Stoeck A, Issa Y, Koensgen D, Mustea A, Sehouli J, Kristiansen G, Altevogt P, Sankpal N V, Mayfield JD, Willman MW, Fleming TP, Gillanders WE, Tang J, Guo Y-SYS, Zhang Y, Yu X-LXL, Li L, Huang W, Li YYY, Chen B, Jiang J-LJ-LJL, Chen ZZ-NNZZ-N, Tang Y, Kesavan P, Nakada MT, Yan L, Taylor DD, Gercel-Taylor C, Testa JE, Brooks PC, Lin JJJ, Wang JJ, Zhou Y, Lu J, Sun Y, Xiao H, Liu M, Tian L, Wang Q, Huang ZZ, Ni S, Xiao X, Xu Q, Wang LLLL, Huang D, Tan C, Sheng W, Du X, Weidle UH, Scheuer W, Eggle D, Klostermann S, Stockinger H, Welton JL, Khanna S, Giles PJ, Brennan P, Brewis I a, Staffurth J, Mason MD, Clayton A, Xu J, Xu H-Y, Zhang Q, Song F, Jiang J-LJ-LJL, Yang X-MM, Mi L, Wen N, Tian R, Wang LLLL, Yao H, Feng Q, Zhang Y, Xing JJ-L, Zhu P, Chen ZZ-NNZZ-N, Xu R, Greening DW, Rai A, Ji H, Simpson RJ, Yang C, Robbins PD, Yauch RL, Berditchevski F, Harler MB, Reichner J, Hemler ME, Yoshioka Y, Kosaka N, Konishi Y, Ohta H, Okamoto H, Sonoda H, Nonaka R, Yamamoto H, Ishii H, Mori M, Furuta K, Nakajima T, Hayashi H, Sugisaki H, Higashimoto H, Kato TT, Takeshita F, Ochiya T, Zhao L, Liu WW, Xiao J, Cao B, Wang SJS, Xiang J, Li Z, Lu S, Hu J, Gao X, Yu L, Wang LLLL, Wang JJ, Wu YY, Chen ZZ-NNZZ-N, Zhu H, Zhao P, Zhang W, Wang SJS, Yu X-LXL, Tang J, Huang W, Li YYY, Cui HY, Guo Y-SYS, Tavernier J, Zhang SH, Jiang J-LJ-LJL, Chen ZZ-NNZZ-N, Iacono KT, Brown AL, Greene MI, Saouaf SJ, Yoshioka Y, Kosaka N, Konishi Y, Ohta H, Okamoto H, Sonoda H, Nonaka R, Yamamoto H, Ishii H, Mori M, Furuta K, Nakajima T, Hayashi H, Sugisaki H, Higashimoto H, Kato TT, Takeshita F, Ochiya T, Muramatsu T, Miyauchi T, Tokuhara T, Hasegawa H, Hattori N, Ishida H, Taki T, Tachibana S, Sasaki S, Miyake M, Kohno M, Hasegawa H, Miyake M, Yamamoto T, Fujita S, Harouaka R, Kang Z, Zheng S-Y, Cao L, Belov L, Zhou J, Christopherson RI, Friedlander TW, Premasekharan G, Paris PL, Armstrong A, Eck SL, Trzpis M, McLaughlin PMJ, de Leij LMFH, Harmsen MC, Lin CW, Liao MY, Lin WW, Wang YP, Lu TY, Wu HC, Liu D, Sun J, Zhu J, Zhou H, Zhang XX, Zhang Y, Wei F, Yang J, Wong DTW, Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD, Kloecker GH, Brinton LT, Sloane HS, Kester M, Kelly K a., Masyuk AI, Masyuk T V., Larusso NF, Li Q, Shao Y, Zhang XX, Zheng T, Miao M, Qin L, Wang B, Ye G, Xiao B, Guo J, Inal JM, Zheng L, Liu WW, Ren L, Wang XX, Wang TT, Zhang N, Gao Y, Luo H, Navarro-Alvarez N, Tang L, Zhou X, Zhu W, Li H, Wen W, Cheng W, Wang F, Wu YY, Qi L, Fan Y, Chen Y, Ding Y, Xu J, Qian J, Huang ZZ, Wang TT, Zhu D, Shu Y, Liu P, Manuscript A, Im H, Shao H, Park Y Il, Peterson VM, Castro CM, Weissleder R, Lee HH, Kato TT, Mizutani K, Kameyama K, Kawakami K, Fujita Y, Nakane K, Kanimoto Y, Ehara H, Ito H, Seishima M, Deguchi T, Ito M, Jakobsen KR, Paulsen BS, Baek R, Varming K, Sorensen BS, Jørgensen MM, Madhavan B, Yue S, Galli U, Rana S, Gross W, Müller M, Giese N a., Kalthoff H, Becker T, Büchler MW, Zöller M (2014) Clinical significance of CD151 gene expression in non-small cell lung cancer. PLoS One 5:659–671 . https://doi.org/10.1038/nbt.2886.Label-free.

  54. Gebretsadik G, Menon MKC. Proteomics and its applications in diagnosis of auto immune diseases. Open J Immunol. 2016;6:14–33. https://doi.org/10.4236/oji.2016.61003.

    Article  CAS  Google Scholar 

  55. Pieper R, Gatlin CL, Makusky AJ, Russo PS, Schatz CR, Miller SS, et al. The human serum proteome: display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics. 2003;3:1345–64. https://doi.org/10.1002/pmic.200300449.

    Article  CAS  PubMed  Google Scholar 

  56. Tekin IO, Pocan B, Borazan A, Ucar E, Kuvandik G, Ilikhan S, et al. Positive correlation of CRP and fibrinogen levels as cardiovascular risk factors in early stage of continuous ambulatory peritoneal dialysis patients. Ren Fail. 2008;30:219–25. https://doi.org/10.1080/08860220701813350.

    Article  CAS  PubMed  Google Scholar 

  57. Eva C, Satyanarayana UCR, Denis M, Melanie K, Fabienne DL, Rodolfo LP, et al. Therapeutic drug monitoring of busulfan for the management of pediatric patients: cross-validation of methods and long-term performance. Ther Drug Monit. 2018;40:84–92. https://doi.org/10.1097/FTD.0000000000000468.

    Article  CAS  Google Scholar 

  58. Shi X, Gao H, Li Z, Li J, Liu Y, Li L, et al. Modified enzyme multiplied immunoassay technique of methotrexate assay to improve sensitivity and reduce cost. BMC Pharmacol Toxicol. 2019;20:1–7. https://doi.org/10.1186/s40360-018-0283-5.

    Article  Google Scholar 

  59. Vaught JB, Henderson MK. Biological sample collection, processing, storage and information management. IARC Sci Publ. 2011:23–42.

  60. Thavasu PW, Longhurst S, Joel SP, Slevin ML, Balkwill FR. Measuring cytokine levels in blood. Importance of anticoagulants, processing, and storage conditions. J Immunol Methods. 1992;153:115–24. https://doi.org/10.1016/0022-1759(92)90313-i.

    Article  CAS  PubMed  Google Scholar 

  61. Adkins JN, Varnum SM, Auberry KJ, Moore RJ, Angell NH, Smith RD, et al. Toward a human blood serum proteome. Mol Cell Proteomics. 2002;1:947–55. https://doi.org/10.1074/FM200066-MCP200.

    Article  CAS  PubMed  Google Scholar 

  62. Nyuwi KT, Gyan Singh CH, Khumukcham S, Rangaswamy R, Ezung YS, Chittvolu SR, et al. The role of serum fibrinogen level in the diagnosis of acute appendicitis. J Clin Diagn Res. 2017;11:PC13–5. https://doi.org/10.7860/JCDR/2017/21479.9319.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Goicoechea M, de Vinuesa SG, Gómez-Campderá F, Aragoncillo I, Verdalles U, Mosse A, et al. Serum fibrinogen levels are an independent predictor of mortality in patients with chronic kidney disease (CKD) stages 3 and 4. Kidney Int Suppl. 2008;68:S67–70. https://doi.org/10.1038/ki.2008.519.

    Article  CAS  Google Scholar 

  64. Sheng L, Luo M, Sun X, Lin N, Mao W, Su D. Serum fibrinogen is an independent prognostic factor in operable nonsmall cell lung cancer. Int J Cancer. 2013;133:2720–5. https://doi.org/10.1002/ijc.28284.

    Article  CAS  PubMed  Google Scholar 

  65. Yang S-H, Du Y, Zhang Y, Li X-L, Li S, Xu R-X, et al. Serum fibrinogen and cardiovascular events in Chinese patients with type 2 diabetes and stable coronary artery disease: a prospective observational study. BMJ Open. 2017;7:e015041. https://doi.org/10.1136/bmjopen-2016-015041.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yu X, Hu F, Yao Q, Li C, Zhang H, Xue Y. Serum fibrinogen levels are positively correlated with advanced tumor stage and poor survival in patients with gastric cancer undergoing gastrectomy : a large cohort retrospective study. BMC Cancer 1–12. 2016. https://doi.org/10.1186/s12885-016-2510-z.

  67. Bonnier F, Petitjean F, Baker MJ, Byrne HJ. Improved protocols for vibrational spectroscopic analysis of body fluids. J Biophotonics. 2014;7:167–79. https://doi.org/10.1002/jbio.201300130.

    Article  CAS  PubMed  Google Scholar 

  68. Bonnier F, Baker MJ, Byrne HJ. Vibrational spectroscopic analysis of body fluids: avoiding molecular contamination using centrifugal filtration. Anal Methods. 2014;6:5155. https://doi.org/10.1039/c4ay00891j.

    Article  CAS  Google Scholar 

  69. Parachalil DR, Bruno C, Bonnier F, Blasco H, Chourpa I, McIntyre J, et al. Raman spectroscopic screening of high and low molecular weight fractions of human serum. Analyst. 2019;144:4295–311. https://doi.org/10.1039/c9an00599d.

    Article  CAS  PubMed  Google Scholar 

  70. Bonifacio A, Dalla Marta S, Spizzo R, Cervo S, Steffan A, Colombatti A, et al. Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: A systematic study. Anal Bioanal Chem. 2014:406. https://doi.org/10.1007/s00216-014-7622-1.

  71. Sacré P, De Bleye C, Chavez P, Netchacovitch L, Hubert P, Ziemons E. Journal of pharmaceutical and biomedical analysis data processing of vibrational chemical imaging for pharmaceutical applications. J Pharm Biomed Anal. 2014;101:123–40. https://doi.org/10.1016/j.jpba.2014.04.012.

    Article  CAS  PubMed  Google Scholar 

  72. Li S, Dai L. An improved algorithm to remove cosmic spikes in Raman spectra for online monitoring. Appl Spectrosc. 2011;65:1300–6. https://doi.org/10.1366/10-06169.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang L, Henson MJ. A practical algorithm to remove cosmic spikes in Raman imaging data for pharmaceutical applications. Appl Spectrosc. 2007;61:1015–20. https://doi.org/10.1366/000370207781745847.

    Article  CAS  PubMed  Google Scholar 

  74. Tian Y, Burch KS. Automatic spike removal algorithm for Raman spectra. Appl Spectrosc. 2016;70:1861–71. https://doi.org/10.1177/0003702816671065.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang X, Chen S, Ling Z, Zhou X, Ding DY, Kim YS, et al. Method for removing spectral contaminants to improve analysis of Raman imaging data. Sci Rep. 2017;7:1–10. https://doi.org/10.1038/srep39891.

    Article  CAS  Google Scholar 

  76. Mozharov S, Nordon A, Littlejohn D, Marquardt B. Automated cosmic spike filter optimized for process Raman spectroscopy. Appl Spectrosc. 2012;66:1326–33. https://doi.org/10.1366/12-06660.

    Article  CAS  PubMed  Google Scholar 

  77. Steinier J, Termonia Y, Deltour J. Smoothing and differentiation of data by simplified least square procedure. Anal Chem. 1972;44:1906–9. https://doi.org/10.1021/ac60319a045.

    Article  CAS  PubMed  Google Scholar 

  78. Eilers PHC. Parametric time warping. Anal Chem. 2004;76:404–11. https://doi.org/10.1021/ac034800e.

    Article  CAS  PubMed  Google Scholar 

  79. De Rooi JJ, Eilers PHC. Chemometrics and intelligent laboratory systems mixture models for baseline estimation. Chemom Intell Lab Syst. 2012;117:56–60. https://doi.org/10.1016/j.chemolab.2011.11.001.

    Article  CAS  Google Scholar 

  80. Lieber CA, Mahadevan-Jansen A. Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc. 2003;57:1363–7. https://doi.org/10.1366/000370203322554518.

    Article  CAS  PubMed  Google Scholar 

  81. Mahadevan-Jansen A, Richards-Kortum RR. Raman spectroscopy for the detection of cancers and precancers. J Biomed Opt. 1996;1:31–70. https://doi.org/10.1117/12.227815.

    Article  CAS  PubMed  Google Scholar 

  82. Mahadevan-Jansen A, Lieber CA. Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc. 2003;57(11):1363–7 57:1363–1367.

    Article  Google Scholar 

  83. Sahu A, Sawant S, Mamgain H, Krishna CM. Raman spectroscopy of serum: an exploratory study for detection of oral cancers. Analyst. 2013;138:4161–74. https://doi.org/10.1039/c3an00308f.

    Article  CAS  PubMed  Google Scholar 

  84. Mehta K, Atak A, Sahu A, Srivastava S, Murali Krishna C. An early investigative serum Raman spectroscopy study of meningioma. Analyst. 2018;143:1916–23. https://doi.org/10.1039/c8an00224j.

    Article  CAS  PubMed  Google Scholar 

  85. De Cássia R, Borges F, Navarro RS, Giana HE, Tavares FG, Fernandes AB, et al. Detecting alterations of glucose and lipid components in human serum by near-infrared Raman spectroscopy. Res Biomed Eng. 2015;31:160–8. https://doi.org/10.1590/2446-4740.0593.

    Article  Google Scholar 

  86. Koo TW, Berger AJ, Itzkan I, Horowitz G, Feld MS. Reagentless blood analysis by near-infrared Raman spectroscopy. Diabetes Technol Ther. 1999;1:153–7. https://doi.org/10.1089/152091599317369.

    Article  CAS  PubMed  Google Scholar 

  87. Kerr LT, Hennelly BM. A multivariate statistical investigation of background subtraction algorithms for Raman spectra of cytology samples recorded on glass slides. Chemom Intell Lab Syst. 2016;158:61–8. https://doi.org/10.1016/j.chemolab.2016.08.012.

    Article  CAS  Google Scholar 

  88. Kohler A, Kirschner C, Oust A, Martens H. Extended multiplicative signal correction as a tool for separation and characterization of physical and chemical information in Fourier transform infrared microscopy images of cryo-sections of beef loin. Appl Spectrosc. 2005;59:707–16. https://doi.org/10.1366/0003702054280649.

    Article  CAS  PubMed  Google Scholar 

  89. Liland KH, Kohler A, Afseth NK. Model-based pre-processing in Raman spectroscopy of biological samples. J Raman Spectrosc. 2016;47:643–50. https://doi.org/10.1002/jrs.4886.

    Article  CAS  Google Scholar 

  90. Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58:109–30. https://doi.org/10.1016/S0169-7439(01)00155-1.

    Article  CAS  Google Scholar 

  91. Afseth NK, Segtnan VH, Wold JP. Raman spectra of biological samples: a study of preprocessing methods. Appl Spectrosc. 2006;60:1358–67. https://doi.org/10.1366/000370206779321454.

    Article  CAS  PubMed  Google Scholar 

  92. Carrascal LM, Galván I, Gordo O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos. 2009;118:681–90. https://doi.org/10.1111/j.1600-0706.2008.16881.x.

    Article  Google Scholar 

  93. Parachalil DR, Commerford D, Bonnier F, Chourpa I, McIntyre J, Byrne HJ. Raman spectroscopy as a potential tool for label free therapeutic drug monitoring in human serum: the case of busulfan and methotrexate. Analyst. 2019;144:5207–14. https://doi.org/10.1039/c9an00801b.

    Article  CAS  PubMed  Google Scholar 

  94. Davis DG, Schaefer DMW, Hinchcliff KW, Wellman ML, Willet VE, Fletcher JM. Measurement of serum IgG in foals by radial immunodiffusion and automated turbidimetric immunoassay. J Vet Intern Med. 2005;19:93–6. https://doi.org/10.1892/0891-6640(2005)19<93:MOSIIF>2.0.CO;2.

    Article  PubMed  Google Scholar 

  95. Ferris RA, Mccue PM, Act D. How to use a quantitative turbidimetric immunoassay assay to determine immunoglobulin G concentrations in neonatal foals. AAEP Proc. 2009;55:45–7.

    Google Scholar 

  96. Lubran MM. The measurement of total serum proteins by the biuret method. Ann Clin Lab Sci. 1978;8:106–10.

    CAS  PubMed  Google Scholar 

  97. Okutucu B, Dinçer A, Habib Ö, Zihnioglu F. Comparison of five methods for determination of total plasma protein concentration. J Biochem Biophys Methods. 2007;70:709–11. https://doi.org/10.1016/j.jbbm.2007.05.009.

    Article  CAS  PubMed  Google Scholar 

  98. Uchida Y, Okuzumi Y, Fujishiro M, Kawamura K, Shibasaki M, Shimetani N, et al. Controversies in the determination of serum albumin concentration in chronic liver diseases. Rinsho Byori. 2006;54:1008–12.

    PubMed  Google Scholar 

  99. Supak Smolcic V, Bilic-Zulle L, Fisic E. Validation of methods performance for routine biochemistry analytes at Cobas 6000 analyzer series module c501. Biochem Medica. 2011:182–90. https://doi.org/10.11613/bm.2011.028.

  100. Luque-Garcia JL, Neubert TA. Sample preparation for serum/plasma profiling and biomarker identification by mass spectrometry. J Chromatogr A. 2007;1153:259–76. https://doi.org/10.1016/j.chroma.2006.11.054.

    Article  CAS  PubMed  Google Scholar 

  101. Hidi IJ, Mühlig A, Jahn M, Liebold F, Cialla D, Weber K, et al. LOC-SERS: towards point-of-care diagnostic of methotrexate. Anal Methods. 2014;6:3943–7. https://doi.org/10.1039/c3ay42240b.

    Article  CAS  Google Scholar 

  102. Jaworska A, Fornasaro S, Sergo V, Bonifacio A (2016) Potential of surface enhanced Raman spectroscopy (SERS) in therapeutic drug monitoring (TDM). A critical review. Biosensors 6:E17.

  103. National award for cancer diagnosis spinout company | University of Strathclyde. https://www.strath.ac.uk/whystrathclyde/news/nationalawardforcancerdiagnosisspinoutcompany/. Accessed 7 Dec 2019.

  104. Wood B New device that can rapidly diagnose disease could save lives - Science. https://www.prnewswire.com/news-releases/new-device-that-can-rapidly-diagnose-disease-could-save-lives-300781671.html. Accessed 7 Dec 2019.

  105. Hands JR, Dorling KM, Abel P, Ashton KM, Brodbelt A, Davis C, et al. Attenuated Total reflection Fourier transform infrared (ATR-FTIR) spectral discrimination of brain tumour severity from serum samples. J Biophotonics. 2014;7:189–99. https://doi.org/10.1002/jbio.201300149.

    Article  CAS  PubMed  Google Scholar 

  106. Zhang K, Song C, Li Q, Li Y, Sun Y, Yang K, et al. The establishment of a highly sensitive ELISA for detecting bovine serum albumin (BSA) based on a specific pair of monoclonal antibodies (mAb) and its application in vaccine quality control. Hum Vaccin. 2010;6:652–8. https://doi.org/10.4161/hv.6.8.11935.

    Article  CAS  PubMed  Google Scholar 

  107. Cattaneo C, Gelsthorpe K, Phillips P, Sokol RJ. Detection of blood proteins in ancient human bone using ELISA: a comparative study of the survival of IgG and albumin. Int J Osteoarchaeol. 1992;2:103–7. https://doi.org/10.1002/oa.1390020202.

    Article  Google Scholar 

  108. Miesbach W, Schenk J, Alesci S, Lindhoff-Last E. Comparison of the fibrinogen Clauss assay and the fibrinogen PT derived method in patients with dysfibrinogenemia. Thromb Res. 2010;126:e428–33. https://doi.org/10.1016/j.thromres.2010.09.004.

    Article  CAS  PubMed  Google Scholar 

  109. Lin PH, Yeh SK, Huang WC, Chen HY, Chen CH, Sheu JR, et al. Research performance of biomarkers from biofluids in periodontal disease publications. J Dent Sci. 2015;10:61–7. https://doi.org/10.1016/j.jds.2013.06.007.

    Article  Google Scholar 

  110. Huang Z, McWilliams A, Lui H, McLean DI, Lam S, Zeng H. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int J Cancer. 2003;107:1047–52. https://doi.org/10.1002/ijc.11500.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflicts of interest.

Funding

Drishya Rajan Parachalil was funded by DIT Fiosraigh scholarship. J. McIntyre was funded by Science Foundation Ireland, PI/11/08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drishya Rajan Parachalil.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parachalil, D.R., McIntyre, J. & Byrne, H.J. Potential of Raman spectroscopy for the analysis of plasma/serum in the liquid state: recent advances. Anal Bioanal Chem 412, 1993–2007 (2020). https://doi.org/10.1007/s00216-019-02349-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02349-1

Keywords

Navigation