Skip to main content
Log in

Instrumental and chemometric analysis of opiates via gas chromatography–vacuum ultraviolet spectrophotometry (GC-VUV)

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Since its introduction, gas chromatography (GC) coupled to vacuum ultraviolet spectrophotometry (VUV) has been shown to complement mass spectrometry (MS) for materials such as petrochemicals, explosives, pesticides, and drugs. In forensic chemistry, opioids are commonly encountered but rarely are the samples pure. This work focuses on GC-VUV analysis applied to naturally occurring (e.g., morphine), semi-synthetic (e.g., heroin), and synthetic (fentanyl) opioids as well as common adulterants and diluents (e.g., lidocaine and quinine). The specificity of the VUV spectra were examined visually as well as via descriptive statistical methods (e.g., correlation coefficients and sums of square residuals). Multivariate pattern recognition techniques (principal component analysis and discriminant analysis (DA)) were used to prove the opioid spectra can be reliably differentiated. The accuracy of the DA model was 100% for a test set of VUV spectra. Finally, three “street” heroin samples were analyzed to show “real-world” performance for forensic analyses. These samples contained adulterants such as caffeine, as well as by-products of heroin manufacture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schug KA, Sawicki I, Carlton DD Jr, Fan H, McNair HM, Nimmo JP, et al. Vacuum ultraviolet detector for gas chromatography. Anal Chem. 2014;86(16):8329–35.

    Article  CAS  Google Scholar 

  2. Santos IC, Schug KA. Recent advances and applications of gas chromatography vacuum ultraviolet spectroscopy. J Sep Sci. 2017;40(1):138–51.

    Article  CAS  Google Scholar 

  3. Skultety L, Frycak P, Qiu C, Smuts J, Shear-Laude L, Lemr K, et al. Resolution of isomeric new designer stimulants using gas chromatography - vacuum ultraviolet spectroscopy and theoretical computations. Anal Chim Acta. 2017;971:55–67.

    Article  CAS  Google Scholar 

  4. Santos IC, Smuts J, Choi WS, Kim Y, Kim SB, Schug KA. Analysis of bacterial FAMEs using gas chromatography - vacuum ultraviolet spectroscopy for the identification and discrimination of bacteria. Talanta. 2018;182:536–43.

    Article  CAS  Google Scholar 

  5. Fan H, Smuts J, Walsh P, Harrison D, Schug KA. Gas chromatography-vacuum ultraviolet spectroscopy for multiclass pesticide identification. J Chromatogr A. 2015;1389:120–7.

    Article  CAS  Google Scholar 

  6. Leghissa A, Hildenbrand ZL, Schug KA. A review of methods for the chemical characterization of cannabis natural products. J Sep Sci. 2018;41(1):398–415.

    Article  CAS  Google Scholar 

  7. Weston C, Smuts J, Mao JX, Schug KA. Investigation of gas phase absorption spectral similarity for stable isotopically labeled compounds in the 125-240 nm wavelength range. Talanta. 2018;177:41–6.

    Article  CAS  Google Scholar 

  8. Zheng JJ, Huang CL, Wang S. Challenging pharmaceutical analyses by gas chromatography with vacuum ultraviolet detection. J Chromatogr A. 2018;1567:185–90.

    Article  CAS  Google Scholar 

  9. Schenk J, Mao JX, Smuts J, Walsh P, Kroll P, Schug KA. Analysis and deconvolution of dimethylnaphthalene isomers using gas chromatography vacuum ultraviolet spectroscopy and theoretical computations. Anal Chim Acta. 2016;945:1–8.

    Article  CAS  Google Scholar 

  10. Garcia-Cicourel AR, Janssen HG. Direct analysis of aromatic hydrocarbons in purified mineral oils for foods and cosmetics applications using gas chromatography with vacuum ultraviolet detection. J Chromatogr A. 2019;1590:113–20.

    Article  CAS  Google Scholar 

  11. Cruse CA, Goodpaster JV. Generating highly specific spectra and identifying thermal decomposition products via gas chromatography / vacuum ultraviolet spectroscopy (GC/VUV): application to nitrate ester explosives. Talanta. 2019;195:580–6.

    Article  CAS  Google Scholar 

  12. Lurie IS, Tremeau-Cayel L, Rowe WF. Recent advances in comprehensive chromatographic analysis of emerging drugs. Lc Gc N Am. 2017;35(12):878–83.

  13. Buchalter S, Marginean I, Yohannan J, Lurie IS. Gas chromatography with tandem cold electron ionization mass spectrometric detection and vacuum ultraviolet detection for the comprehensive analysis of fentanyl analogues. J Chromatogr A. 2019;1596:183–93.

    Article  CAS  Google Scholar 

  14. Kranenburg RF, García-Cicourel AR, Kukurin C, Janssen H-G, Schoenmakers PJ, van Asten AC. Distinguishing drug isomers in the forensic laboratory: GC-VUV in addition to GC-MS for orthogonal selectivity and the use of library match scores as a new source of information. For Sci Intl 2019.

  15. Roberson ZR, Goodpaster JV. Differentiation of structurally similar phenethylamines via gas chromatography–vacuum ultraviolet spectroscopy (GC–VUV). For Chem. 2019;15:100172.

    Article  Google Scholar 

  16. Anthony IGM, Brantley MR, Gaw CA, Floyd AR, Solouki T. Vacuum ultraviolet spectroscopy and mass spectrometry: a tandem detection approach for improved identification of gas chromatography-eluting compounds. Anal Chem. 2018;90(7):4878–85.

    Article  CAS  Google Scholar 

  17. Kumar R, Sharma V. Chemometrics in forensic science. TrAC Trends Anal Chem. 2018;105:191–201.

    Article  CAS  Google Scholar 

  18. Liszewski EA, Lewis SW, Siegel JA, Goodpaster JV. Characterization of automotive paint clear coats by ultraviolet absorption microspectrophotometry with subsequent chemometric analysis. Appl Spectrosc. 2010;64(10):1122–5.

    Article  CAS  Google Scholar 

  19. Turner DA, Goodpaster JV. Comparing the effects of weathering and microbial degradation on gasoline using principal components analysis. J Forensic Sci. 2012;57(1):64–9.

    Article  CAS  Google Scholar 

  20. Barrett JA, Siegel JA, Goodpaster JV. Forensic discrimination of dyed hair color: II. Multivariate statistical analysis. J Forensic Sci. 2011;56(1):95–101.

    Article  Google Scholar 

  21. Weston C, Smuts J, Mao JX, Schug KA. Investigation of gas phase absorption spectral similarity for stable-isotopically labeled compounds in the 125-240nm wavelength range. Talanta. 2018;177:41–6.

    Article  CAS  Google Scholar 

  22. Prebihalo SE, Berrier KL, Freye CE, Bahaghighat HD, Moore NR, Pinkerton DK, et al. Multidimensional gas chromatography: advances in instrumentation, chemometrics, and applications. Anal Chem. 2018;90(1):505–32.

    Article  CAS  Google Scholar 

  23. Barroso M, Gallardo E, Vieira DN, Queiroz JA, Lopez-Rivadulla M. Bioanalytical procedures and recent developments in the determination of opiates/opioids in human biological samples. Anal Bioanal Chem. 2011;400(6):1665–90.

    Article  CAS  Google Scholar 

  24. Maas A, Madea B, Hess C. Confirmation of recent heroin abuse: accepting the challenge. Drug Test Anal. 2018;10(1):54–71.

    Article  Google Scholar 

  25. Dinis-Oliveira RJ. Metabolism and metabolomics of opiates: a long way of forensic implications to unravel. J Forensic Legal Med. 2019;61:128–40.

    Article  Google Scholar 

  26. Burns SM, Cunningham CW, Mercer SL. DARK classics in chemical neuroscience: fentanyl. ACS Chem Neurosci. 2018;9(10):2428–37.

    Article  CAS  Google Scholar 

  27. Kaa E, Bent K. Impurities, adulterants and diluents of illicit heroin in Denmark (Jutland and Funen). Forensic Sci Int. 1986;31(3):195–210.

    Article  CAS  Google Scholar 

  28. Kaa E. Impurities, adulterants and diluents of illicit heroin. Changes during a 12-year period. Forensic Sci Int. 1994;64(2–3):171–9.

    Article  CAS  Google Scholar 

  29. Stromberg L, Lundberg L, Neumann H, Bobon B, Huizer H, van der Stelt NW. Heroin impurity profiling. A harmonization study for retrospective comparisons. Forensic Sci Int. 2000;114(2):67–88.

    Article  CAS  Google Scholar 

  30. Santos IC, Smuts J, Schug KA. Rapid profiling and authentication of vanilla extracts using gas chromatography-vacuum ultraviolet spectroscopy. Food Anal Methods. 2017;10(12):4068–78.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge and thank the Indiana State Police Crime Lab for “street” samples.

Funding

This work was supported by the National Institute of Justice (NIJ) grant number 2017-R2-CX-0018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John V. Goodpaster.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Disclaimer

The views expressed in this article are not necessarily those of the NIJ.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberson, Z.R., Gordon, H.C. & Goodpaster, J.V. Instrumental and chemometric analysis of opiates via gas chromatography–vacuum ultraviolet spectrophotometry (GC-VUV). Anal Bioanal Chem 412, 1123–1128 (2020). https://doi.org/10.1007/s00216-019-02337-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02337-5

Keywords

Navigation