Skip to main content

Advertisement

Log in

A dip-and-read optical aptasensor for detection of tau protein

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Neurodegeneration currently remains without a differential diagnosis or cure. Tau protein is one of the biomarkers of neurodegenerative diseases commonly known as tauopathies. Tau protein plays an integral role in stabilizing microtubules and cell structure; however, due to post-translational modifications, tau protein undergoes self-assembly into cytotoxic structures and is co-localized intra- and extracellularly. Hence, tau protein is a viable biomarker associated with protein pathogenesis and neurodegeneration. The novel optical biosensor for tau441 protein is based on the aptamer recognition probe and the biolayer interferometry (BLI) method for detection. The current biotin-aptasensor in combination with the streptavidin surface provides real-time monitoring of tau441 protein in the nanomolar range, with the limit of detection at 6.7 nM in vitro. The tau441 detection is achieved with high selectivity over other neurodegeneration biomarkers which include amyloid-β and α-synuclein. The aptasensor also allows for tau441 protein detection in a complex matrix such as fetal bovine serum, indicating its utility in other biological fluids for diagnostic applications. The optical method is simple, rapid and highly selective for point-of-care application which is critical for achieving the early and differential diagnosis of neurodegenerative diseases and identifying their treatments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1991;72:1858–62.

    Google Scholar 

  2. Alonso AD, Clerico JD, Li B, Corbo CP, Alaniz ME, Grundke-Iqbal I, et al. Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration. J Biol Chem. 2010;285:30851–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee VM, Goedert M, Trojanowsk JQ. Neurodegenerative tauopathies. Annu Rev Neurosci. 2001;24:1121–59.

    CAS  PubMed  Google Scholar 

  4. De Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, et al. Propagation of tau pathology in a model of early Alzheimer's disease. Neuron. 2012;73:685–97.

    PubMed  PubMed Central  Google Scholar 

  5. Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI. Trans-cellular propagation of tau aggregation by fibrillar species. J Biol Chem. 2012;287:19440–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Babić M, Vogrinc Ž, Diana A, Klepac N, Borovečki F, Hof P, et al. Comparison of two commercial enzyme-linked immunosorbent assays for cerebrospinal fluid measurement of amyloid β1-42 and total tau. Transl Neurosci. 2013;4:234–40.

    Google Scholar 

  7. Carlin N, Martic-Milne S. Anti-tau antibodies based electrochemical sensor for detection of tau protein biomarkers. J Electrochem Soc. 2018;165:G3018–25.

    CAS  Google Scholar 

  8. Kim S, Wark AW, Lee HJ. Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance. Anal Chem. 2016;88:7793–9.

    CAS  PubMed  Google Scholar 

  9. Derkus B, Bozkurt PA, Tulu M, Emergul KC, Yucesan C. Simultaneous quantification of myelin basic protein and tau proteins in cerebrospinal fluid and serum of multiple sclerosis patients using nanoimmunosensor. Biosens Bioelectron. 2017;89:781–8.

    CAS  PubMed  Google Scholar 

  10. Wang SX, Acha D, Shah AJ, Hills F, Roitt I, Demosthenous A, et al. Detection of the tau protein in human serum by a sensitive four-electrode electrochemical biosensor. Biosens Bioelectron. 2017;92:482–8.

    CAS  PubMed  Google Scholar 

  11. Nehmé H, Chantepie S, Defert J, Morin P, Papy-Garcia D, Nehmé R. New methods based on capillary electrophoresis for in vitro evaluation of protein tau phosphorylation by glycogen synthase kinase 3-β. Anal Bioanal Chem. 2015;407:2821–8.

    PubMed  Google Scholar 

  12. Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol. 2010;28:595–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kontsekova E, Zilka N, Kovacech B, Skrabana R, Novak M. Identification of structural determinants on tau protein essential for its pathological function: novel therapeutic target for tau immunotherapy in Alzheimer's disease. Alz Res Ther. 2014;6:45.

    Google Scholar 

  14. Camero S, Benitez MJ, Cuadros R, Hernandez F, Avila J, Jimenez JS. Thermodynamics of the interaction between Alzheimer's disease related tau protein and DNA. PLoS One. 2014;9:e104690.

    PubMed  PubMed Central  Google Scholar 

  15. Yanamandra K, Kfoury N, Jiang H, Mahan TE, Ma S, Maloney SE, et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron. 2013;80:402–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Vestergaard M, Kerman K, Kim D, Hip HM, Tamiya E. Detection of Alzheimer's tau protein using localised surface plasmon resonance-based immunochip. Talanta. 2008;74:1038–42.

    CAS  PubMed  Google Scholar 

  17. Neely A, Perry C, Varisli B, Singh AK, Arbneshi T, Senapati D, et al. C. Ultrasensitive and highly selective detection of Alzheimer's disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano. 2009;3:2834–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zengin A, Tamer U, Caykara T. A SERS-based sandwich assay for ultrasensitive and selective detection of Alzheimer's tau protein. Biomacromolecules. 2013;14:3001–9.

    CAS  PubMed  Google Scholar 

  19. Jayasena SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem. 1999;45:1628–50.

    CAS  PubMed  Google Scholar 

  20. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–22.

    CAS  PubMed  Google Scholar 

  21. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–10.

    CAS  PubMed  Google Scholar 

  22. Gao S, Zheng X, Jiao B, Wang L. Post-SELEX optimization of aptamers. Anal Bioanal Chem. 2016;408:4567–73.

    CAS  PubMed  Google Scholar 

  23. Tan W, Donovan MJ, Jiang J. Aptamers from cell-based selection for bioanalytical applications. Chem Rev. 2013;113:2842–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Krylova SM, Musheev M, Nutiu R, Li Y, Lee G, Krylov S. N. tau protein binds single-stranded DNA sequence specifically--the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Lett. 2005;579:1371–5.

    CAS  PubMed  Google Scholar 

  25. Mechaly A, Cohen H, Cohen O, Mazor O. A biolayer interferometry-based assay for rapid and highly sensitive detection of biowarfare agents. Anal Biochem. 2016;506:22–7.

    CAS  PubMed  Google Scholar 

  26. Verzijl D, Riedl T, Parren P, Gerritsen A. A novel label-free cell-based assay technology using biolayer interferometry. Biosens Bioelectron. 2017;87:388–95.

    CAS  PubMed  Google Scholar 

  27. Zhang M, Jiang X, Le H, Wan P, Ye B. Dip-and-read method for label-free renewable sensing enhanced using complex DNA structures. ACS Appl Mater Interfaces. 2013;5:473–8.

    CAS  PubMed  Google Scholar 

  28. Do T, Ho F, Heidecker B, Witte K, Chang L, Lerner L. A rapid method for determining dynamic binding capacity of resins for the purification of proteins. Prot Expr Purif. 2008;60:147–50.

    CAS  Google Scholar 

  29. Ciesielski GL, Hytöne VP, Kaguni L. S. Biolayer interferometry: a novel method to elucidate protein-protein and protein-DNA interactions in the mitochondrial DNA Replisome. Meth. Mol. Biol. 2016;1351:223–31.

    CAS  Google Scholar 

  30. Auer S, Koho T, Uusi-Kerttula H, Vesikari T, Blazevic V, Hytonen VP. Rapid and sensitive detection of norovirus antibodies in human serum with a biolayer interferometry biosensor. Sens. Act. B Chem. 2015;221:507–14.

    CAS  Google Scholar 

  31. Gao S, Zheng X, Wu J. A biolayer interferometry-based competitive biosensor for rapid and sensitive detection of saxitoxin. Sens Act B Chem. 2017;246:169–74.

    CAS  Google Scholar 

  32. Gao S, Zheng X, Wu J. A biolayer interferometry-based enzyme-linked aptamer sorbent assay for real-time and highly sensitive detection of PDGF-BB. Biosens Bioelectron. 2018;102:57–62.

    CAS  PubMed  Google Scholar 

  33. Wu X, Wu D, Lu Z, Chen W, Hu X, Ding YJ. A novel method for high-level production of TEV protease by superfolder GFP tag. Biomed Biotech. 2009;2009:108.

    Google Scholar 

  34. Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, Janson B, et al. Globular amyloid beta-peptide oligomer - a homogenous and stable neuropathological protein in Alzheimer's disease. J Neurochem. 2005;95:834–47.

    CAS  PubMed  Google Scholar 

  35. Kim S, Lee HJ. Direct detection of α-1 antitrypsin in serum samples using surface Plasmon resonance with a new Aptamer-antibody Sandwich assay. Anal Chem. 2015;87:7235–40.

    CAS  PubMed  Google Scholar 

  36. Kim S, Lee J, Lee SJ, Lee HJ. Ultra-sensitive detection of IgE using biofunctionalized nanoparticle-enhanced SPR. Talanta. 2010;81:1755–9.

    CAS  PubMed  Google Scholar 

  37. Mocak J, Bond AM, Mitchell S, Scollary G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques. Pure Appl Chem. 1997;69:297–328.

    CAS  Google Scholar 

  38. Li Y, Lim E, Fields T, Wu H, Xu Y, Wang A, et al. Improving sensitivity and specificity of amyloid-β peptides and tau protein detection with antibiofouling magnetic nanoparticles for liquid biopsy of alzheimer’s disease. ACS Biomater Sci Eng. 2019;5:3595–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen Z, Mengela D, Keshavanb A, Rissman RA, Billinton A, Perkinton M, et al. Learnings about the complexity of extracellular tau aid development of a blood-based screen for Alzheimer’s disease. Alzheimers Dement. 2019;15:487–96.

    PubMed  Google Scholar 

  40. Shui B, Tao D, Cheng J, Mei Y, Jaffrezic-Renault N, Guo Z. A novel electrochemical aptamer–antibody sandwich assay for the detection of tau-381 in human serum. Analyst. 2018;143:3549–54.

    CAS  PubMed  Google Scholar 

  41. Li D, Scarano S, Lisi S, Palladino P, Minunni M. Real-time tau protein detection by sandwich-based piezoelectric biosensing: exploring tubulin as a mass enhancer. Sensors. 2018;18:946–56.

    PubMed Central  Google Scholar 

  42. Demeritte T, Nellore BPV, Kanchanapally R, Sinha SS, Pramanik A, Chavva SR, et al. Hybrid graphene oxide based plasmonic-magnetic multifunctional nanoplatform for selective separation and label-free identification of Alzheimer’s disease biomarkers. ACS Appl Mater Interfaces. 2015;7:13693–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lisi S, Scarano S, Fedeli S, Pascale E, Cicchi S, Ravelet C, et al. Toward sensitive immuno-based detection of tau protein by surface plasmon resonance coupled to carbon nanostructures as signal amplifiers. Biosens Bioelectron. 2017;93:289–92.

    CAS  PubMed  Google Scholar 

  44. Neely A, Perry C, Varisli B, Singh AK, Arbneshi T, Senapati D, et al. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon rayleigh scattering properties of gold nanoparticle. ACS Nano. 2009;3:2834–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nu TTV, Tran NHT, Nam E, Nguyen TT, Yoon WJ, Cho S, et al. Blood-based immunoassay of tau proteins for early diagnosis of Alzheimer's disease using surface plasmon resonance fiber sensors. RSC Adv. 2018;8:7855–62.

    Google Scholar 

  46. Chen L, Lin J, Yi J, Weng Q, Zhou Y, Han Z, et al. A tyrosinase-induced fluorescence immunoassay for detection of tau protein using dopamine-functionalized CuInS2/ZnS quantum dots. Anal Bioanal Chem. 2019;411:5277–85.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Chemistry at Oakland University for support.

Funding

This project was funded in part by the NIH NIGMS R15 to S.M. (2016-2018) and C.W. (2019-2020).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Sanela Martic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Electronic supplementary material

ESM 1

(PDF 868 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziu, I., Laryea, E.T., Alashkar, F. et al. A dip-and-read optical aptasensor for detection of tau protein. Anal Bioanal Chem 412, 1193–1201 (2020). https://doi.org/10.1007/s00216-019-02350-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02350-8

Keywords

Navigation