Skip to main content

Advertisement

Log in

Application and prospects of CRISPR/Cas9-based methods to trace defined genomic sequences in living and fixed plant cells

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The 3D organization of chromatin plays an important role in genome stability and many other pivotal biological programs. Therefore, the establishment of imaging methods, which enable us to study the dynamics of chromatin in living cells, is necessary. Although primary live cell imaging methods were a breakthrough, there is a need to develop more specific labeling techniques. With the discovery of programmable DNA binding proteins, such zinc finger proteins (ZFP), transcription activator-like effectors (TALE), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a major leap forward was made. Here, we review the applications and potential of fluorescent repressor-operator systems, programmable DNA binding proteins with an emphasis on CRISPR-based chromatin imaging in living and fixed cells, and their potential application in plant science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BIFC:

Bimolecular fluorescence complementation

CENH3:

Centromere specific histone H3

CRISPR:

Clustered regularly interspaced short palindromic repeats

Cas9:

CRISPR-associated protein 9

Cys2-His2:

Cysteine cysteine-histidine histidine

crRNA:

crisper RNA

dCas9:

dead Cas9

EdU:

5-Ethynyl-2′-deoxyuridine

FISH:

Fluorescence in situ hybridization

FROS:

Fluorescent repressor operator system

GFP:

Green fluorescent protein

gRNA:

guide RNA

LiveFISH:

Live-cell fluorescent in situ hybridization

Nm:

Neisseria meningitides

TALE:

Transcription activator-like effector

PAM:

Protospacer adjacent motif

PBS:

PUF binding site

PUF:

Pumilio/fem-3 mRNA binding factor

RGEN-ISL:

RNA-guided endonuclease-in situ labeling

RVD:

Repeat variable di-residue

scFv:

Single-chain variable fragment antibody

scFv-GCN4:

GCN4 peptide binding single-chain variable fragment antibody

Sp:

Streptococcus pyogenes

St1:

Streptococcus thermophilus

sgRNA:

single guide RNA

tracr-RNA:

Trans-activating RNA

ZFP:

Zinc finger proteins

References

  • Anton T, Bultmann S, Leonhardt H, Markaki Y (2014) Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 5:163–172

    PubMed  PubMed Central  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    CAS  PubMed  Google Scholar 

  • Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ, Fudenberg G, Imakaev M, Mirny LA, Wu CT, Zhuang X (2016) Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:418–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Choi J, Bailey S (2014) Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. J Biol Chem 289:13284–13294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cryderman DE, Morris EJ, Biessmann H, Elgin SCR, Wallrath LL (1999) Silencing at Drosophila telomeres: nuclear organization and chromatin structure play critical roles. EMBO J 18:3724–3735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng WL, Shi XH, Tjian R, Lionnet T, Singer RH (2015) CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc Natl Acad Sci U S A 112:11870–11875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dreissig S, Schiml S, Schindele P, Weiss O, Rutten T, Schubert V, Gladilin E, Mette MF, Puchta H, Houben A (2017) Live-cell CRISPR imaging in plants reveals dynamic telomere movements. Plant J 91:565–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan J, Lu G, Hong Y, Hu Q, Mai X, Guo J, Si X, Wang F, Zhang Y (2018) Live imaging and tracking of genome regions in CRISPR/dCas9 knock-in mice. Genome Biol 19:192

    PubMed  PubMed Central  Google Scholar 

  • Dvorackova M, Rossignol P, Shaw PJ, Koroleva OA, Doonan JH, Fajkus J (2010) AtTRB1, a telomeric DNA-binding protein from Arabidopsis, is concentrated in the nucleolus and shows highly dynamic association with chromatin. Plant J 61:637–649

    CAS  PubMed  Google Scholar 

  • Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10:1116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Rocha PP, Luo VM, Raviram R, Deng Y, Mazzoni EO, Skok JA (2016) CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nat Commun 7:11707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto S, Matsunaga S (2017) Visualization of chromatin loci with transiently expressed CRISPR/Cas9 in plants. Cytologia 82:559–562

    CAS  Google Scholar 

  • Fujimoto S, Sugano SS, Kuwata K, Osakabe K, Matsunaga S (2016) Visualization of specific repetitive genomic sequences with fluorescent TALEs in Arabidopsis thaliana. J Exp Bot 67:6101–6110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Germier T, Sylvain A, Silvia K, David L, Kerstin B (2018) Real-time imaging of specific genomic loci in eukaryotic cells using the ANCHOR DNA labelling system. Methods Enzymol 142:16–23

    Google Scholar 

  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at Saccharomyces cerevisiae telomeres - reversible repression of Pol-II transcription. Cell 63:751–762

    CAS  PubMed  Google Scholar 

  • Gu B, Swigut T, Spencley A, Bauer MR, Chung M, Meyer T, Wysocka J (2018) Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359:1050–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa T, Katagiri Y, Ando T, Matsunaga S (2015) DNA double-strand breaks alter the spatial arrangement of homologous loci in plant cells. Sci Rep 5:11058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Lu G, Duan J, Liu W, Zhang Y (2018) Comparison and optimization of CRISPR/dCas9/gRNA genome-labeling systems for live cell imaging. Genome Biol 19:39

    PubMed  PubMed Central  Google Scholar 

  • Ishii T, Schubert V, Khosravi S, Dreissig S, Metje-Sprink J, Sprink T, Fuchs J, Meister A, Houben A (2019) RNA-guided endonuclease - in situ labelling (RGEN-ISL): a fast CRISPR/Cas9-based method to label genomic sequences in various species. New Phytol 222:1652–1661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jovtchev G, Watanabe K, Pecinka A, Rosin FM, Mette MF, Lam E, Schubert I (2008) Size and number of tandem repeat arrays can determine somatic homologous pairing of transgene loci mediated by epigenetic modifications in Arabidopsis thaliana nuclei. Chromosoma 117:267–276

    PubMed  Google Scholar 

  • Jovtchev G, Borisova B, Kuhlmann M, Fuchs J, Watanabe K, Schubert I, Mette MF (2011) Pairing of lacO tandem repeats in Arabidopsis thaliana nuclei requires the presence of hypermethylated, large arrays at two chromosomal positions, but does not depend on H3-lysine-9-dimethylation. Chromosoma 120:609–619

    CAS  PubMed  Google Scholar 

  • Kato L (2001) Detection of chromosomes tagged with green fluorescent protein in live Arabidopsis thaliana plants. Genome Biol:2

  • Knight SC, Tjian R, Doudna JA (2018) Genomes in focus: development and applications of CRISPR-Cas9 imaging technologies. Angew Chem 57:4329–4337

    CAS  Google Scholar 

  • Koo DH, Zhao HN, Jiang JM (2016) Chromatin‐associated transcripts of tandemly repetitive DNA sequences revealed by RNA‐FISH. Chromosome Res 24:467–480

  • Kozubek S, Lukasova E, Amrichova J, Kozubek M, Liskova A, Slotova J (2000) Influence of cell fixation on chromatin topography. Anal Biochem 282:29–38

    CAS  PubMed  Google Scholar 

  • Lane AB, Strzelecka M, Ettinger A, Grenfell AW, Wittmann T, Heald R (2015) Enzymatically generated CRISPR libraries for genome labeling and screening. Dev Cell 34:373–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lassadi I, Kamgoué A, Goiffon I, Tanguy-le-Gac N, KB (2015) Differential chromosome conformations as hallmarks of cellular identity revealed by mathematical polymer modeling. PLoS Comput Biol:1–21

  • Lindhout BI, Fransz P, Tessadori F, Meckel T, Hooykaas PJJ, Zaal BJ (2007) Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Res 35:e107

    PubMed  PubMed Central  Google Scholar 

  • Liu Q, Segal DJ, Ghiara JB, CFB (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A 94:5525–5530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Reyes-Gutierrez P, Pederson T (2013) Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. Proc Natl Acad Sci U S A 110

  • Ma HNA, Reyes-Gutierreza P, Wolfec SA, Zhangb S, Pedersona T (2015) Multicolor CRISPR labeling of chromosomal loci in human cells. PNAS 112:3002–3007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T (2016) Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34:528–530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maass PG, Barutcu AR, Shechner DM, Weiner CL, Melé M, Rinn JL (2018) Spatiotemporal allele organization by allele-specific CRISPR live-cell imaging (SNP-CLING). Nat Struct Mol Biol 25:176–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mak AN-S, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mariamé B, Kappler-Gratias S, Kappler M, Balor S, Gallardo F, Bystricky K (2018) Real-time visualization and quantification of human cytomegalovirus replication in living cells using the ANCHOR DNA labeling technology. J Virol 92:e00571–e00518

    PubMed  PubMed Central  Google Scholar 

  • Matzke AJM, Huettel B, van der Winden J, Matzke M (2005) Use of two-color fluorescence-tagged transgenes to study interphase chromosomes in living plants. Plant Physiol 139:1586–1596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyanari Y, Ziegler-Birling C, Torres-Padilla M-E (2013) Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct 20:1321–1324

    CAS  Google Scholar 

  • Němečková A, Wäsch C, Schubert V, Ishii T, Hřibová E, Houben A (2019) CRISPR/Cas9-based RGEN-ISL allows the simultaneous and specific visualization of proteins, DNA repeats and sites of. DNA replication, Cytogenetic and Genome Research (in press)

    Google Scholar 

  • Nimmo ER, Cranston G, Allshire RC (1994) Telomere-associated chromosome breakage in fission yeast results in variegated expression of adjacent genes. EMBO J 13:3801–3811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pecinka A, Kato N, Meister A, Probst AV, Schubert I, Lam E (2005) Tandem repetitive transgenes and fluorescent chromatin tags alter local interphase chromosome arrangement in Arabidopsis thaliana. J Cell Sci 118:3751–3758

    CAS  PubMed  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin P, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K, Singh R, Darzacq X, Yildiz A, Adli M (2017) Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun 8:14725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinett CC, Straight AF, Li GW, Willhelm C, Sudlow G, Murray A, Belmont AS (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135:1685–1700

    CAS  PubMed  Google Scholar 

  • Rosin FM, Watanabe N, Cacas J, Kato N, Arroyo JM, Fang Y, May B, Vaughn M, Simorowski J, Ramu U, McCombie RW, Spector DL, Martienssen RA, Lam E (2008) Genome-wide transposon tagging reveals location-dependent effects on transcription and chromatin organization in Arabidopsis. Plant J

  • Saad H, GallardoF DM, Tanguy-le-Gac N, Lane D, KB (2014) DNA dynamics during early double-strand break processing revealed by non-intrusive imaging of living cells. PLoS Genet:10

  • Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7:171–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schrumpfova PP, Schorova S, Fajkus J (2016) Telomere- and telomerase-associated proteins and their functions in the plant cell. Front Plant Sci:7

  • Schubert I, Shaw P (2011) Organization and dynamics of plant interphase chromosomes. Trends Plant Sci 16:273–281

    CAS  PubMed  Google Scholar 

  • Shao S, Zhang W, Hu H, Xue B, Qin J, Sun C, Sun Y, Wei W, Sun Y (2016) Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res 44:e86

    PubMed  PubMed Central  Google Scholar 

  • Steinert J, Schiml S, Fauser F, Puchta H (2015) Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J 84:1295–1305

    CAS  PubMed  Google Scholar 

  • Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G (2013) Structure of the AvrBs3-DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Crystallogr Sect D 69:1707–1716

    CAS  Google Scholar 

  • Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Valle RD (2014) A protein tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Tol N, Rolloos M, Hooykaas PJJ, van der Zaal BJ (2019) Two novel strategies to assess meiotic protein in vivo expression in Arabidopsis thaliana. F1000Research 8

  • Wang S, Su JH, Zhang F, Zhuang X (2016) An RNA-aptamer-based two-color CRISPR labeling system. Sci Rep 6:26857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Nakamura M, Abbott TR, Zhao D, Luo A, Yu C, Nguyen CM, Lo A, Daley T, La Russa M, Liu Y, Qi LS (2019a) CRISPR-mediated live imaging of genome editing and transcription. Science 365:1301–1305

    CAS  PubMed  Google Scholar 

  • Wang S, Hao Y, Zhang L, Wang F, Li J, Wang L, Fan C (2019b) Multiplexed superresolution CRISPR imaging of chromatin in living cells. CCS Chemistry 1:278–285

    CAS  Google Scholar 

  • Wienert B, Wyman SK, Richardson CD, Yeh CD, Akcakaya P, Porritt MJ, Morlock M, Vu JT, Kazane KR, Watry HL, Judge LM, Conklin BR, Maresca M, Corn JE (2019) Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364:286-289.Wu X., Mao Sh., Ying Y., Ch. K, Chen A.K. (2019) Progress and challenges for live-cell imaging of genomic loci using CRISPR-based platforms. Genomics, Proteomics & Bioinformatics 17: 119–128

  • Wu X, Mao Sh, Ying Y, ChK, Chen AK (2019) Progress and challenges for live-cell imaging of genomic loci using CRISPR-based platforms. Genomics, Proteomics & Bioinformatics 17:119–128

  • Xue Y, Murat A (2018) Live-cell imaging of chromatin condensation dynamics by CRISPR. Cell press 4:216–235

    CAS  Google Scholar 

  • Ye H, Rong Z, Lin Y (2017) Live cell imaging of genomic loci using dCas9-SunTag system and a bright fluorescent protein. Protein Cell

  • Zhang S, Song Z (2017) Aio-Casilio: a robust CRISPR-Cas9-Pumilio system for chromosome labeling. J Mol Histol 48:293–299

    CAS  PubMed  Google Scholar 

Download references

Funding

Cytogenetic research in the author’s laboratory has been supported by Deutsche Forschungsgemeinschaft (DFG) grant HO1779/28-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Houben.

Additional information

Responsible Editor: Beth Sullivan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, S., Ishii, T., Dreissig, S. et al. Application and prospects of CRISPR/Cas9-based methods to trace defined genomic sequences in living and fixed plant cells. Chromosome Res 28, 7–17 (2020). https://doi.org/10.1007/s10577-019-09622-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-019-09622-0

Keywords

Navigation