Skip to main content

Advertisement

Log in

The Fåhræus-Lindqvist effect in small blood vessels: how does it help the heart?

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The Fåhræus-Lindqvist effect is usually explained from a physical point of view with the so-called Haynes’ marginal zone theory, i.e., migration of red blood cells (RBCs) to a core layer surrounded by an annular RBCs-free plasma layer. In this paper we show that the marginal layer, though causing a substantial reduction in flow resistance and increasing discharge, does not reduce the rate of energy dissipation. This fact is not surprising if one considers the electric analog of the flow in a vessel: a resistance reduction increases both the current intensity (i.e., the discharge) and the energy dissipation. This result is obtained by considering six rheological models that relate the blood viscosity to hematocrit (volume fraction occupied by erythrocytes). Some physiological implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fåhræus, R., Lindqvist T: The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96, 562–568 (1931)

    Google Scholar 

  2. Martini, P., Pierach, A., Scheryer, E.: Die strömung des blutes in engen gefä en. Eine abweichung vom poiseuille’schen gesetz. Dtsch. Arch. Klin. Med. 169, 212–222 (1931)

    Google Scholar 

  3. Pries, A.R., Neuhas, D., Gaehtgens, P.: Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. Heart Circ. Physiol. 263, H1770–H1778 (1992)

    Google Scholar 

  4. Secomb, T.W., Pries, A.R.: Blood viscosity in microvessels: experiment and theory. C. R. Phys. 14, 470–478 (2013)

    ADS  Google Scholar 

  5. Secomb, T.W.: Blood flow in the microcirculation. Annu. Rev. Fluid Mech. 49, 443–461 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Haynes, R.F.: Physical basis of the dependence of blood viscosity on tube radius. Am. J. Physiol. 198, 1193–1200 (1960)

    Google Scholar 

  7. Fournier, R.L.: Basic Transport Phenomena in Biomedical Engineering. CRC Press, Boca Raton (2012)

    Google Scholar 

  8. Chebbi, R.: Dynamics of blood flow: modeling of the Fåhræus-Lindqvist effect. J. Biol. Phys. 41, 313–326 (2015). https://doi.org/10.1007/s10867-015-9376-1

    Google Scholar 

  9. Sharan, M., Popel, A.S.: A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38, 415–428 (2001)

    Google Scholar 

  10. Huo, Y., Kassab, G.S.: Effect of compliance and hematocrit on wall shear stress in a model of the entire coronary arterial tree. J. Appl. Physiol. 107, 500–505 (1985)

    Google Scholar 

  11. Xue, X., Patel, M.K., Kersaudy-Kerhoas, M., Bailey, C., Desmulliez, M.P.: Modelling and simulation of the behaviour of a biofluid in a microchannel biochip separator. Comput. Methods Biomech. Biomed. Engin. 14, 549–560 (2011)

    Google Scholar 

  12. Fasano, A., Sequeira, A.: Hemomath. The Mathematics of Blood, Springer (2017)

  13. Mansour, M.H., Bressloff, N.W., Shearman, C.P.: Red blood cell migration in microvessels. Biorheology 47, 73–93 (2010). https://doi.org/10.3233/BIR-2010-0560

    Google Scholar 

  14. Chebbi, R.: Dynamics of blood flow: Modeling of Fåhraeus and Fåhraeus–Lindqvist effects using a shear-induced red blood cell migration model. J. Biol. Phys. 44, 591–603 (2018). https://doi.org/10.1007/s10867-018-9508-5

    Google Scholar 

  15. Leighton, D., Acrivos, A: The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415–427 (1987)

    ADS  Google Scholar 

  16. Nott, P.R., Brady, J.F.: Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275, 157–199 (1994)

    ADS  MATH  Google Scholar 

  17. Phillips, R.J., Armstrong, R.C., Brown, R.A.: A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids 4, 30–40 (1992)

    ADS  MATH  Google Scholar 

  18. Pranay, P., Henriquez-Rivera, R.G., Graham, M.D.: Depletion layer formation in suspensions of elastic capsules in Newtonian and viscoelastic fluids. Phys. Fluids 24 (06), 2012 (1902)

    Google Scholar 

  19. Monsorno, D., Varsakelis, C., Papalexandris, M.V.: A thermomechanical model for granular suspensions. J. Fluid Mech. 808, 410–440 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Monsorno, D., Varsakelis, C., Papalexandris, M.V.: Poiseuille flow of dense non-colloidal suspensions: The role of intergranular and nonlocal stresses in particle migration. J. Non-Newtonian Fluid Mech. 247, 229–238 (2017)

    MathSciNet  Google Scholar 

  21. Lecampion, B., Garagash, D.I.: Confined flow of suspensions modelled by a frictional rheology. J. Fluid Mech. 759, 197–235 (2014)

    ADS  MathSciNet  Google Scholar 

  22. Boyer, F., Guazzelli, E., Pouliquen, O.: Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301 (2011)

    ADS  Google Scholar 

  23. Ahnert, T., Münch, A., Wagner, B.: Models for the two-phase flow of concentrated suspensions. Eur. J. Appl. Math 30, 585–617 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Rajagopal, K.R., Tao, L.: Mechanics of Mixtures. World Scientific, Singapore (1995)

    MATH  Google Scholar 

  25. Drew, D.A., Passman S.L.: Theory of Multicomponent Fluids, Applied Mathematical Sciences, vol. 135. Springer (1999)

  26. Anand, M., Rajagopal, K.R.A.: Note on the flows of inhomogeneous fluids with shear-dependent viscosities. Arch. Mech. 57, 417–428 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Fusi, L., Farina, A., Rosso, F., Rajagopal, K.: Thin-film flow of an inhomogeneous fluid with density-dependent viscosity. Fluids 4, 30 (2019)

    Google Scholar 

  28. Massoudi, M.: Vaidya A. Unsteady flows of inhomogeneous incompressible fluids. Int. J. Non-Linear. Mech. 46, 738–741 (2011)

    ADS  Google Scholar 

  29. Segré, G., Sileberger, A.: Behaviour of macroscopic rigid spheres in Poiseuille flow. J. Fluid Mech. 14, 115–135 (1962)

    ADS  Google Scholar 

  30. Secomb, T.W.: Mechanics of red blood cells and blood flow in narrow tubes. In: Pozrikidis, C. (ed.) Modeling and Simulation of Capsules and Biological Cells, pp 163–196. CRC, Boca Raton (2003)

    Google Scholar 

  31. Coupier, G., Kaoui, B., Podgorski, T., Misbah, C.: Noninertial lateral migration of vesicles in bounded Poiseuille flow. Phys. Fluids 20, 111702 (2008)

    ADS  MATH  Google Scholar 

  32. Doddi, S.K., Bagchi, P.: Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys. Rev. E 79, 046318 (2009)

    ADS  Google Scholar 

  33. Kaoui, B., Ristow, G.H., Cantat, I., Misbah, C., Zimmermann, W.: Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. Phys. Rev. E 77(02), 2008 (1903)

    Google Scholar 

  34. Goldsmith, H.L.: Red cell motions wall interactions in tube flow. Fed Proc. 30, 1578–1590 (1971)

    Google Scholar 

  35. Moyers-Gonzalez, M.A., Owens, R.G.: Mathematical modelling of the cell-depleted peripheral layer in the steady flow of blood in a tube. Biorheology 47, 39–71 (2010)

    Google Scholar 

  36. Moyers-Gonzalez, M.A., Owens, R.G., Fang, J.: A non-homogeneous constitutive model for human blood. Part I: Model derivation and steady flow. J. Fluid Mech. 617, 327–354 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Dimakopoulos, Y., Kelesidis, G., Tsouka, S., Georgiou, G.C., Tsamopoulos, J.: Hemodynamics in stenotic vessels of small diameter under steady state conditions: effect of viscoelasticity and migration of red blood cells. Biorheology 52, 183–210 (2015)

    Google Scholar 

  38. Brust, M., Schaefer, C., Doerr, R., Pan, L., Garcia, M., Arratia, P.E., Wagner, C.: Rheology of human blood plasma: viscoelastic versus Newtonian behavior. Phys. Rev. Lett. 110, 078305 (2013)

    ADS  Google Scholar 

  39. Varchanis, S., Dimakopoulos, Y., Wagner, C., Tsamopoulos, J.: How viscoelastic is human blood plasma? Soft Matter 14, 4238–4251 (2018)

    ADS  Google Scholar 

  40. Drew, D.A.: Flow structure in the Poiseuille flow of a particle-fluid mixture, SIAM Workshop on Multiphase Flow, June 2–4 (1986)

  41. Graham, A.L., Altobelli, S.A., Fukushima, E., Mondy, L.A., Stephens, T.S.: Note: NMR imaging of shear-induced diffusion and structure in concentrated suspensions undergoing Couette flow. J. Rheol. 35, 191–198 (1991)

    ADS  Google Scholar 

  42. Karnis, A., Goldsmith, H.L., Mason, S.G.: The kinetics of flowing dispersions: I. Concentrated Suspensions of rigid particles. J. Colloid and Interf. Sci. 22, 531–543 (1966)

    ADS  Google Scholar 

  43. Pries, A.R., Secomb, T.W., Geßner, T., Sperandio, M.B., Gross, J.F., Gaehtgens, P.: Resistance to blood flow in microvessels in vivo. Circ. Res. 75, 904–915 (1994)

    Google Scholar 

  44. Wells, R.E., Merrill, E.W.: Influence of flow properties of blood upon viscosity-hematocrit relationships. J. Clin. Investig. 41, 1591–1598 (1962)

    Google Scholar 

  45. Goldsmith, H.L., Cokelet, G.R., Gaehtgens, P.: Robin Fåhraeus: evolution of his concepts in cardiovascular physiology. Am. J. Physiol. Heart. Circ. Physiol. 257, H1005–H1015 (1989)

    Google Scholar 

  46. Secomb, T.W., Hsu, R., Pries, A.R.: Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorheology 38, 143–50 (2001)

    Google Scholar 

  47. Secomb, T.W., Hsu, R., Pries, A.R.: Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am. J. Physiol. Heart Circ. Physiol. 281, H629–636 (2001)

    Google Scholar 

  48. Yeleswarapu, K.K., Kameneva, M.V., Rajagopal, K.R., Antaki, J.F.: The blood flow in tubes: theory and experiments. Mech. Res. Commun. 25, 257–262 (1998)

    MATH  Google Scholar 

  49. Goldsmith, H.L., Marlow, J.C.: Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells. J. Colloid and Interface Sci. 71, 383–407 (1979)

    ADS  Google Scholar 

  50. Liepsch, D.W.: Flow in tubes and arteries - a comparison. Biorheology 23, 395–402 (1986)

    Google Scholar 

  51. Truesdell, C., Rajagopal, K.R.: An Introduction to the Mechanics of Fluids. Birkhauser, Boston (1999)

    MATH  Google Scholar 

  52. Bayliss, L.E.: Reology of blood and lymph, in Deformation and Flow in Biological Systems. Frey-Wyssling ed., North-Holland (1952)

    Google Scholar 

  53. Hund, S.J., Kameneva, M.V., Antaki, J.F.: A quasi-mechanistic mathematical representation for blood viscosity. Fluids 2, 10–36 (2017)

    Google Scholar 

  54. Charm, S.E., Kurland, G.S.: Blood Flow and Microcirculation, Wiley (1974)

  55. Hatschek, E.: Eine reihe von abnormen Liesegangschen Schictung. Koll. Zeitschr 27, 225–229 (1920)

    Google Scholar 

  56. Cokelet, G.R.: The Rheology of Human Blood, Doctoral dissertation, M.I.T, Cambridge, MA (1963)

  57. Bingham, E.C., White, G.F., Amer, J.: The viscosity and fluidity of emulsions, crystallin liquids and colloidal solutions. Chem. Soc. 33, 1257–1275 (1911)

    Google Scholar 

  58. Nubar, Y.: Effect of slip on the rheology of a composite fluid: application to blood. Biorheology 4, 113–117 (1967)

    Google Scholar 

  59. Krieger, I.M., Dougherty, T.J.: A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3, 137–152 (1959)

    MATH  Google Scholar 

  60. Liu, A.J., Nage, S.R.: The jamming transition and the marginally jammed solid, Annual. Rev. Condens. Matter Phys. 1, 347–369 (2010)

    ADS  Google Scholar 

  61. Dix, F.J., Scott Blair, G.W.: On the flow of suspensions through narrow tubes. J. Appl. Physics 11, 574–581 (1940)

    ADS  MATH  Google Scholar 

  62. Oiknine, C., Azelvandre, F.: Scott Blair model and Fahraeus-Lindqvist effect. Rheol. Acta 14, 51–52 (1975)

    Google Scholar 

  63. Snyder, G.K.: Erythrocyte evolution: the significance of the Fåhraeus-Lindqvist phenomenon. Respir. Physiol. 19, 271–278 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angiolo Farina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ascolese, M., Farina, A. & Fasano, A. The Fåhræus-Lindqvist effect in small blood vessels: how does it help the heart?. J Biol Phys 45, 379–394 (2019). https://doi.org/10.1007/s10867-019-09534-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-019-09534-4

Keywords

Navigation