Skip to main content

Advertisement

Log in

The Progresses of Spermatogonial Stem Cells Sorting Using Fluorescence-Activated Cell Sorting

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

In recent years, the research on stem cells has been more and more in-depth, and many achievements have been made in application. However, due to the small number of spermatogonial stem cells (SSCs) and deficiency of efficient markers, it is difficult to obtain very pure SSCs, which results in the research on them being hindered. In fact, many methods have been developed to isolate and purify SSCs, but these methods have their shortcomings. Fluorescence-activated cell sorting (FACS), as a method to enrich SSCs with the help of specific surface markers, has the characteristics of high efficiency and accuracy in enrichment of SSCs, thus it is widely accepted as an effective method for purification of SSCs. This review summarizes the recent studies on the application of FACS in SSCs, and introduces some commonly used markers of effective SSCs sorting, aiming to further optimize the FACS sorting method for SSCs, so as to promote the research of germline stem cells and provide new ideas for the research of reproductive biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phillips, B. T., Gassei, K., & Orwig, K. E. (2010). Spermatogonial stem cell regulation and spermatogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365, 1663–1678.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee, J., Kanatsu-Shinohara, M., Inoue, K., et al. (2007). Akt mediates self-renewal division of mouse spermatogonial stem cells. Development, 134, 1853–1859.

    CAS  PubMed  Google Scholar 

  3. Kubota, H., Avarbock, M. R., & Brinster, R. L. (2003). Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 6487–6492.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fayomi, A. P., & Orwig, K. E. (2018). Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Research, 29, 207–214.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lo, K. C., Brugh, V. M., Parker, M., & Lamb, D. J. (2005). Isolation and enrichment of murine spermatogonial stem cells using rhodamine 123 mitochondrial dye. Biology of Reproduction, 72, 767–771.

    CAS  PubMed  Google Scholar 

  6. Buageaw, A., Sukhwani, M., Ben-Yehudah, A., et al. (2005). GDNF family receptor alpha1 phenotype of spermatogonial stem cells in immature mouse testes. Biology of Reproduction, 73, 1011–1016.

    CAS  PubMed  Google Scholar 

  7. Kanatsu-Shinohara, M., Mori, Y., & Shinohara, T. (2013). Enrichment of mouse spermatogonial stem cells based on aldehyde dehydrogenase activity. Biology of Reproduction, 89, 140.

    PubMed  Google Scholar 

  8. Lawson, K., & Pedersen, R. (1992). Clonal analysis of cell fate during gastrulation and early neurulation in the mouse. Ciba Foundation Symposia, 165, 3–26.

    CAS  PubMed  Google Scholar 

  9. Clermont, Y., & Perey, B. (1957). Quantitative study of the cell population of the seminiferous tubules in immature rats. The American Journal of Anatomy, 100, 241–267.

    CAS  PubMed  Google Scholar 

  10. Yoshida, S., Sukeno, M., Nakagawa, T., et al. (2006). The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development, 133, 1495–1505.

    CAS  PubMed  Google Scholar 

  11. Cendron, M., Schned, A. R., & Ellsworth, P. I. (1998). Histological evaluation of the testicular nubbin in the vanishing testis syndrome. The Journal of Urology, 160, 1161–1162; discussion 3.

    CAS  PubMed  Google Scholar 

  12. Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4, 7–25.

    CAS  PubMed  Google Scholar 

  13. Xie, T., & Spradling, A. C. (2000). A niche maintaining germ line stem cells in the Drosophila ovary. Science, 290, 328–330.

    CAS  PubMed  Google Scholar 

  14. Tran, J., Brenner, T. J., & DiNardo, S. (2000). Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature, 407, 754–757.

    CAS  PubMed  Google Scholar 

  15. Kiger, A. A., White-Cooper, H., & Fuller, M. T. (2000). Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature, 407, 750–754.

    CAS  PubMed  Google Scholar 

  16. Monesi, V. (1962). Autoradiographic study of DNA synthesis and the cell cycle in spermatogonia and spermatocytes of mouse testis using tritiated thymidine. The Journal of Cell Biology, 14, 1–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Huckins, C. (1971). The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. The Anatomical Record, 169, 533–557.

    CAS  PubMed  Google Scholar 

  18. Meistrich, M. L. (1993). Effects of chemotherapy and radiotherapy on spermatogenesis. European Urology, 23, 136–141; discussion 42.

    CAS  PubMed  Google Scholar 

  19. de Rooij, D. G. (1973). Spermatogonial stem cell renewal in the mouse. I. Normal situation. Cell and Tissue Kinetics, 6, 281–287.

    PubMed  Google Scholar 

  20. Komeya, M., & Ogawa, T. (2015). Spermatogonial stem cells: Progress and prospects. Asian Journal of Andrology, 17, 771–775.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Davis, J. C., & Schuetz, A. W. (1975). Separation of germinal cells from immature rat testes by sedimentation at unit gravity. Experimental Cell Research, 91, 79–86.

    CAS  PubMed  Google Scholar 

  22. Romrell, L. J., Bellvé, A. R., & Fawcett, D. W. (1976). Separation of mouse spermatogenic cells by sedimentation velocity. A morphological characterization. Developmental Biology, 49, 119–131.

    CAS  PubMed  Google Scholar 

  23. Bellvé, A. R., Cavicchia, J. C., Millette, C. F., O'Brien, D. A., Bhatnagar, Y. M., & Dym, M. (1977). Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. The Journal of Cell Biology, 74, 68–85.

    PubMed  PubMed Central  Google Scholar 

  24. Meistrich, M. L. (1977). Separation of spermatogenic cells and nuclei from rodent testes. Methods in Cell Biology, 15, 15–54.

    CAS  PubMed  Google Scholar 

  25. Bucci, L. R., Brock, W. A., Johnson, T. S., & Meistrich, M. L. (1986). Isolation and biochemical studies of enriched populations of spermatogonia and early primary spermatocytes from rat testes. Biology of Reproduction, 34, 195–206.

    CAS  PubMed  Google Scholar 

  26. Hermann, B., Sukhwani, M., Simorangkir, D., Chu, T., Plant, T., & Orwig, K. (2009). Molecular dissection of the male germ cell lineage identifies putative spermatogonial stem cells in rhesus macaques. Human Reproduction, 24, 1704–1716.

    CAS  PubMed  Google Scholar 

  27. Valli, H., Sukhwani, M., Dovey, S. L., et al. (2014). Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertility and Sterility, 102, 566–80.e7.

    PubMed  PubMed Central  Google Scholar 

  28. Sánchez-Luengo, M., Rovira, M., Serrano, M., Fernandez-Marcos, P. J., & Martinez, L. (2017). Analysis of the advantages of cis reporters in optimized FACS-Gal. Cytometry. Part A, 91, 721–729.

    Google Scholar 

  29. Givan, A. L. (2011). Flow cytometry: An introduction. Methods in Molecular Biology, 699, 1–29.

    CAS  PubMed  Google Scholar 

  30. Maciorowski, Z., Chattopadhyay, P. K., & Jain, P. (2017). Basic multicolor flow Cytometry. Current Protocols in Immunology, 117, 5.4.1–5.4.38.

    Google Scholar 

  31. Ortega-Ferrusola, C., Gil, M. C., Rodríguez-Martínez, H., Anel, L., Peña, F. J., & Martín-Muñoz, P. (2017). Flow cytometry in Spermatology: A bright future ahead. Reproduction in Domestic Animals, 52, 921–931.

    CAS  PubMed  Google Scholar 

  32. Smith, L. G., Weissman, I. L., & Heimfeld, S. (1991). Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proceedings of the National Academy of Sciences of the United States of America, 88, 2788–2792.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Okada, S., Nakauchi, H., Nagayoshi, K., Nishikawa, S., Miura, Y., & Suda, T. (1992). In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood, 80, 3044–3050.

    CAS  PubMed  Google Scholar 

  34. Shinohara, T., Orwig, K. E., Avarbock, M. R., & Brinster, R. L. (2000). Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 8346–8351.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Brinster, R. L., & Avarbock, M. R. (1994). Germline transmission of donor haplotype following spermatogonial transplantation. Proceedings of the National Academy of Sciences of the United States of America, 91, 11303–11307.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brinster, R. L., & Zimmermann, J. W. (1994). Spermatogenesis following male germ-cell transplantation. Proceedings of the National Academy of Sciences of the United States of America, 91, 11298–11302.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shinohara, T., Avarbock, M. R., & Brinster, R. L. (1999). beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences of the United States of America, 96, 5504–5509.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ryu, B. Y., Orwig, K. E., Kubota, H., Avarbock, M. R., & Brinster, R. L. (2004). Phenotypic and functional characteristics of spermatogonial stem cells in rats. Developmental Biology, 274, 158–170.

    CAS  PubMed  Google Scholar 

  39. Kanatsu-Shinohara, M., Toyokuni, S., & Shinohara, T. (2004). CD9 is a surface marker on mouse and rat male germline stem cells. Biology of Reproduction, 70, 70–75.

    CAS  PubMed  Google Scholar 

  40. Lassalle, B., Bastos, H., Louis, J. P., et al. (2004). 'Side Population' cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development, 131, 479–487.

    CAS  PubMed  Google Scholar 

  41. Fujita, K., Ohta, H., Tsujimura, A., et al. (2005). Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia. The Journal of Clinical Investigation, 115, 1855–1861.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kanatsu-Shinohara, M., Morimoto, H., & Shinohara, T. (2012). Enrichment of mouse spermatogonial stem cells by melanoma cell adhesion molecule expression. Biology of Reproduction, 87, 139.

    PubMed  Google Scholar 

  43. Di Persio, S., Saracino, R., Fera, S., et al. (2017). Spermatogonial kinetics in humans. Development, 144, 3430–3439.

    PubMed  Google Scholar 

  44. Sohni, A., Tan, K., Song, H. W., et al. (2019). The neonatal and adult human testis defined at the single-cell level. Cell Reports, 26, 1501–17.e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Park, H. J., Lee, W. Y., Park, C., Hong, K., & Song, H. (2019). CD14 is a unique membrane marker of porcine spermatogonial stem cells, regulating their differentiation. Scientific Reports, 9, 9980.

    PubMed  PubMed Central  Google Scholar 

  46. Morimoto, H., Kanatsu-Shinohara, M., Orwig, K. E., & Shinohara, T. (2019). Expression and functional analyses of EPHA2 in mouse spermatogonial stem cells. Biology of Reproduction.

  47. Tanaka, T., Kanatsu-Shinohara, M., Lei, Z., Rao, C. V., & Shinohara, T. (2016). The luteinizing hormone-testosterone pathway regulates mouse Spermatogonial stem cell self-renewal by suppressing WNT5A expression in Sertoli cells. Stem Cell Reports, 7, 279–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Murphey, P., McLean, D. J., McMahan, C. A., Walter, C. A., & McCarrey, J. R. (2013). Enhanced genetic integrity in mouse germ cells. Biology of Reproduction, 88, 6.

    PubMed  Google Scholar 

  49. Wu, X., Schmidt, J. A., Avarbock, M. R., et al. (2009). Prepubertal human spermatogonia and mouse gonocytes share conserved gene expression of germline stem cell regulatory molecules. Proceedings of the National Academy of Sciences of the United States of America, 106, 21672–21677.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. von Kopylow, K., Kirchhoff, C., Jezek, D., et al. (2010). Screening for biomarkers of spermatogonia within the human testis: A whole genome approach. Human Reproduction, 25, 1104–1112.

    Google Scholar 

  51. Kristensen, D. M., Nielsen, J. E., Skakkebaek, N. E., et al. (2008). Presumed pluripotency markers UTF-1 and REX-1 are expressed in human adult testes and germ cell neoplasms. Human Reproduction, 23, 775–782.

    CAS  PubMed  Google Scholar 

  52. von Kopylow, K., Staege, H., Spiess, A. N., et al. (2012). Differential marker protein expression specifies rarefaction zone-containing human Adark spermatogonia. Reproduction, 143, 45–57.

    Google Scholar 

  53. von Kopylow, K., Staege, H., Schulze, W., Will, H., & Kirchhoff, C. (2012). Fibroblast growth factor receptor 3 is highly expressed in rarely dividing human type A spermatogonia. Histochemistry and Cell Biology, 138, 759–772.

    CAS  Google Scholar 

  54. Lim, J., Goriely, A., Turner, G. D., et al. (2011). OCT2, SSX and SAGE1 reveal the phenotypic heterogeneity of spermatocytic seminoma reflecting distinct subpopulations of spermatogonia. The Journal of Pathology, 224, 473–483.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. He, Z., Kokkinaki, M., Jiang, J., Dobrinski, I., & Dym, M. (2010). Isolation, characterization, and culture of human spermatogonia. Biology of Reproduction, 82, 363–372.

    CAS  PubMed  Google Scholar 

  56. Grisanti, L., Falciatori, I., Grasso, M., et al. (2009). Identification of spermatogonial stem cell subsets by morphological analysis and prospective isolation. Stem Cells, 27, 3043–3052.

    CAS  PubMed  Google Scholar 

  57. Zohni, K., Zhang, X., Tan, S. L., Chan, P., & Nagano, M. (2012). CD9 is expressed on human male germ cells that have a long-term repopulation potential after transplantation into mouse testes. Biology of Reproduction, 87, 27.

    PubMed  Google Scholar 

  58. Aeckerle, N., Eildermann, K., Drummer, C., et al. (2012). The pluripotency factor LIN28 in monkey and human testes: A marker for spermatogonial stem cells? Molecular Human Reproduction, 18, 477–488.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kossack, N., Terwort, N., Wistuba, J., et al. (2013). A combined approach facilitates the reliable detection of human spermatogonia in vitro. Human Reproduction, 28, 3012–3025.

    CAS  PubMed  Google Scholar 

  60. Izadyar, F., Wong, J., Maki, C., et al. (2011). Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Human Reproduction, 26, 1296–1306.

    PubMed  Google Scholar 

  61. Dovey, S. L., Valli, H., Hermann, B. P., et al. (2013). Eliminating malignant contamination from therapeutic human spermatogonial stem cells. The Journal of Clinical Investigation, 123, 1833–1843.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Conrad, S., Renninger, M., Hennenlotter, J., et al. (2008). Generation of pluripotent stem cells from adult human testis. Nature, 456, 344–349.

    CAS  PubMed  Google Scholar 

  63. Williams, A. F. (1985). Immunoglobulin-related domains for cell surface recognition. Nature, 314, 579–580.

    CAS  PubMed  Google Scholar 

  64. Seeger, R. C., Danon, Y. L., Rayner, S. A., & Hoover, F. (1982). Definition of a Thy-1 determinant on human neuroblastoma, glioma, sarcoma, and teratoma cells with a monoclonal antibody. Journal of Immunology, 128, 983–989.

    CAS  Google Scholar 

  65. Grosche, A., Hauser, A., Lepper, M. F., et al. (2016). The proteome of native adult Müller Glial cells from Murine Retina. Molecular & Cellular Proteomics, 15, 462–480.

    CAS  Google Scholar 

  66. Craig, W., Kay, R., Cutler, R. L., & Lansdorp, P. M. (1993). Expression of Thy-1 on human hematopoietic progenitor cells. The Journal of Experimental Medicine, 177, 1331–1342.

    CAS  PubMed  Google Scholar 

  67. Rege, T. A., & Hagood, J. S. (2006). Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. The FASEB Journal, 20, 1045–1054.

    CAS  PubMed  Google Scholar 

  68. Barboni, E., Gormley, A. M., Pliego Rivero, F. B., Vidal, M., & Morris, R. J. (1991). Activation of T lymphocytes by cross-linking of glycophospholipid-anchored Thy-1 mobilizes separate pools of intracellular second messengers to those induced by the antigen-receptor/CD3 complex. Immunology, 72, 457–463.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Schrans-Stassen, B. H., van de Kant, H. J., de Rooij, D. G., & van Pelt, A. M. (1999). Differential expression of c-kit in mouse undifferentiated and differentiating type A spermatogonia. Endocrinology, 140, 5894–5900.

    CAS  PubMed  Google Scholar 

  70. Wixler, V., Laplantine, E., Geerts, D., et al. (1999). Identification of novel interaction partners for the conserved membrane proximal region of alpha-integrin cytoplasmic domains. FEBS Letters, 445, 351–355.

    CAS  PubMed  Google Scholar 

  71. Stingl, J., Eirew, P., Ricketson, I., et al. (2006). Purification and unique properties of mammary epithelial stem cells. Nature, 439, 993–997.

    CAS  PubMed  Google Scholar 

  72. Lathia, J. D., Gallagher, J., Heddleston, J. M., et al. (2010). Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell, 6, 421–432.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kowalski-Chauvel, A., Gouaze-Andersson, V., Baricault, L., et al. (2019). Alpha6-integrin regulates FGFR1 expression through the ZEB1/YAP1 transcription complex in Glioblastoma stem cells resulting in enhanced proliferation and stemness. Cancers (Basel), 11.

  74. Cariati, M., Naderi, A., Brown, J. P., et al. (2008). Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line. International Journal of Cancer, 122, 298–304.

    CAS  PubMed  Google Scholar 

  75. Cooper, H. M., Tamura, R. N., & Quaranta, V. (1991). The major laminin receptor of mouse embryonic stem cells is a novel isoform of the alpha 6 beta 1 integrin. The Journal of Cell Biology, 115, 843–850.

    CAS  PubMed  Google Scholar 

  76. Ito, C., Yamatoya, K., Yoshida, K., Maekawa, M., Miyado, K., & Toshimori, K. (2010). Tetraspanin family protein CD9 in the mouse sperm: Unique localization, appearance, behavior and fate during fertilization. Cell and Tissue Research, 340, 583–594.

    CAS  PubMed  Google Scholar 

  77. Takao, Y., Fujiwara, H., Yamada, S., et al. (1999). CD9 is expressed on the cell surface of human granulosa cells and associated with integrin alpha6beta1. Molecular Human Reproduction, 5, 303–310.

    CAS  PubMed  Google Scholar 

  78. Zheng, Y., Thomas, A., Schmidt, C. M., & Dann, C. T. (2014). Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture. Human Reproduction, 29, 2497–2511.

    CAS  PubMed  Google Scholar 

  79. Praest, P., de Buhr, H., & Wiertz, E. J. H. J. (1988). A flow cytometry-based approach to unravel viral interference with the MHC class I antigen processing and presentation pathway. Methods in Molecular Biology, 2019, 187–198.

    Google Scholar 

  80. Ema, H., Takano, H., Sudo, K., & Nakauchi, H. (2000). In vitro self-renewal division of hematopoietic stem cells. The Journal of Experimental Medicine, 192, 1281–1288.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Fraser, L., Taylor, A. H., & Forrester, L. M. (2013). SCF/KIT inhibition has a cumulative but reversible effect on the self-renewal of embryonic stem cells and on the survival of differentiating cells. Cellular Reprogramming, 15, 259–268.

    CAS  PubMed  Google Scholar 

  82. Anderson, R., Fässler, R., Georges-Labouesse, E., et al. (1999). Mouse primordial germ cells lacking beta1 integrins enter the germline but fail to migrate normally to the gonads. Development, 126, 1655–1664.

    CAS  PubMed  Google Scholar 

  83. Yoshinaga, K., Nishikawa, S., Ogawa, M., Hayashi, S., Kunisada, T., & Fujimoto, T. (1991). Role of c-kit in mouse spermatogenesis: Identification of spermatogonia as a specific site of c-kit expression and function. Development, 113, 689–699.

    CAS  PubMed  Google Scholar 

  84. Zhang, L., Tang, J., Haines, C. J., et al. (2013). c-kit expression profile and regulatory factors during spermatogonial stem cell differentiation. BMC Developmental Biology, 13, 38.

    PubMed  PubMed Central  Google Scholar 

  85. Vincent, S., Segretain, D., Nishikawa, S., et al. (1998). Stage-specific expression of the Kit receptor and its ligand (KL) during male gametogenesis in the mouse: A Kit-KL interaction critical for meiosis. Development, 125, 4585–4593.

    CAS  PubMed  Google Scholar 

  86. Osta, W. A., Chen, Y., Mikhitarian, K., et al. (2004). EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Research, 64, 5818–5824.

    CAS  PubMed  Google Scholar 

  87. Anderson, R., Schaible, K., Heasman, J., & Wylie, C. (1999). Expression of the homophilic adhesion molecule, Ep-CAM, in the mammalian germ line. Journal of Reproduction and Fertility, 116, 379–384.

    CAS  PubMed  Google Scholar 

  88. Gassei, K., & Orwig, K. E. (2013). SALL4 expression in gonocytes and spermatogonial clones of postnatal mouse testes. PLoS One, 8, e53976.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kirkland, T. N., & Viriyakosol, S. (1998). Structure-function analysis of soluble and membrane-bound CD14. Progress in Clinical and Biological Research, 397, 79–87.

    CAS  PubMed  Google Scholar 

  90. Ziegler-Heitbrock, H. W., & Ulevitch, R. J. (1993). CD14: Cell surface receptor and differentiation marker. Immunology Today, 14, 121–125.

    CAS  PubMed  Google Scholar 

  91. Fearns, C., Kravchenko, V. V., Ulevitch, R. J., & Loskutoff, D. J. (1995). Murine CD14 gene expression in vivo: Extramyeloid synthesis and regulation by lipopolysaccharide. The Journal of Experimental Medicine, 181, 857–866.

    CAS  PubMed  Google Scholar 

  92. Orwig, K. E., Ryu, B. Y., Master, S. R., et al. (2008). Genes involved in post-transcriptional regulation are overrepresented in stem/progenitor spermatogonia of cryptorchid mouse testes. Stem Cells, 26, 927–938.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Arvanitis, D., & Davy, A. (2008). Eph/ephrin signaling: Networks. Genes & Development, 22, 416–429.

    CAS  Google Scholar 

  94. Kullander, K., & Klein, R. (2002). Mechanisms and functions of Eph and ephrin signalling. Nature Reviews. Molecular Cell Biology, 3, 475–486.

    CAS  PubMed  Google Scholar 

  95. Chan, F., Oatley, M. J., Kaucher, A. V., et al. (2014). Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes & Development, 28, 1351–1362.

    CAS  Google Scholar 

  96. Mutoji, K., Singh, A., Nguyen, T., et al. (2016). TSPAN8 expression distinguishes spermatogonial stem cells in the prepubertal mouse testis. Biology of Reproduction, 95, 117.

    PubMed  PubMed Central  Google Scholar 

  97. Li, C. H., Yan, L. Z., Ban, W. Z., et al. (2017). Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring. Cell Research, 27, 241–252.

    CAS  PubMed  Google Scholar 

  98. Fan, Y., Ye, M. S., Zhang, J. Y., et al. (2019). Chromosomal level assembly and population sequencing of the Chinese tree shrew genome. Zoological Research, 40(6), 506–521.

    PubMed  Google Scholar 

  99. Oatley, M., Kaucher, A., Racicot, K., & Oatley, J. (2011). Inhibitor of DNA binding 4 is expressed selectively by single Spermatogonia in the male Germline and regulates the self-renewal of Spermatogonial stem cells in mice. Biology of Reproduction, 85, 347–356.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Aloisio, G., Nakada, Y., Saatcioglu, H., et al. (2014). PAX7 expression defines germline stem cells in the adult testis. Journal of Clinical Investigation, 124, 3929–3944.

    CAS  PubMed  Google Scholar 

  101. Komai, Y., Tanaka, T., Tokuyama, Y., et al. (2014). Bmi1 expression in long-term germ stem cells. Scientific Reports, 4, 6175.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim, Y. H., Kim, B. J., Kim, B. G., et al. (2013). Stage-specific embryonic antigen-1 expression by undifferentiated spermatogonia in the prepubertal boar testis. Journal of Animal Science, 91, 3143–3154.

    CAS  PubMed  Google Scholar 

  103. Sun, Y. Z., Liu, S. T., Li, X. M., & Zou, K. (2019). Progress in. Zoological Research, 40, 343–348.

    PubMed  Google Scholar 

  104. Bedford-Guaus, S. J., Kim, S., Mulero, L., et al. (2017). Molecular markers of putative spermatogonial stem cells in the domestic cat. Reproduction in Domestic Animals, 52(Suppl 2), 177–186.

    CAS  PubMed  Google Scholar 

  105. He, Z., Kokkinaki, M., Jiang, J., Zeng, W., Dobrinski, I., & Dym, M. (2012). Isolation of human male germ-line stem cells using enzymatic digestion and magnetic-activated cell sorting. Methods in Molecular Biology, 825, 45–57.

    CAS  PubMed  Google Scholar 

  106. Yu, X., Riaz, H., Dong, P., et al. (2014). Identification and IVC of spermatogonial stem cells in prepubertal buffaloes. Theriogenology, 81, 1312–1322.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fundamental Research Funds for the Central Universities in China (KYDS201807 and KYTZ201602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Zou.

Ethics declarations

Conflict of Interest

The authors have no potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Wang, J. & Zou, K. The Progresses of Spermatogonial Stem Cells Sorting Using Fluorescence-Activated Cell Sorting. Stem Cell Rev and Rep 16, 94–102 (2020). https://doi.org/10.1007/s12015-019-09929-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09929-9

Keywords

Navigation