Skip to main content

Advertisement

Log in

Ancestry informative DIP loci for dissecting genetic structure and ancestry proportions of Qinghai Tibetan and Tibet Tibetan groups

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Tibetans living in the Qing-Tibet plateau show unique genetic features since they are exposed to the high altitude environment. Accordingly, it is necessary for us to analyze genetic components of the Tibetan groups. Here, genetic structure and ancestry proportions of Tibet Tibetan and Qinghai Tibetan groups are dissected by using a previously published ancestral deletion/insertion polymorphisms (DIPs) panel. Genetic distributions of the analyzed DIPs in both Tibetan groups reveal that some DIPs show relatively balanced frequency distributions with the values ranging from 0.4 to 0.6, implying that these DIPs could be used as individual identification loci for forensic applications in both groups. Besides, the cumulative power of discrimination of the panel also reflects that the panel could serve as a valuable tool for forensic individual identifications in Tibet Tibetan and Qinghai Tibetan groups. Population genetic analyses including principal component analysis, DA genetic distances, phylogenetic tree, and genetic structure reveal that two studied Tibetan groups have closer genetic affiliations with East Asian populations. Genetic differentiation analyses of two Han populations, Xinjiang Uyghur and two Tibetan groups reveal that some DIP loci might be informative for differentiating Uyghurs from the other populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu T (2001) The Qinghai-Tibetan plateau: how high do Tibetans live? High Alt Med Biol 2(4):489–499. https://doi.org/10.1089/152702901753397054

    Article  CAS  PubMed  Google Scholar 

  2. Wilkins MR, Aldashev A, Morrell NW (2002) Nitric oxide, phosphodiesterase inhibition, and adaptation to hypoxic conditions. Lancet 359(9317):1539–1540

    Article  CAS  PubMed  Google Scholar 

  3. Suzuki K, Kizaki T, Hitomi Y, Nukita M, Kimoto K, Miyazawa N, Kobayashi K, Ohnuki Y, Ohno H (2003) Genetic variation in hypoxia-inducible factor 1alpha and its possible association with high altitude adaptation in Sherpas. Med Hypotheses 61(3):385–389

    Article  CAS  PubMed  Google Scholar 

  4. Peng Y, Yang Z, Zhang H, Cui C, Qi X, Luo X, Tao X, Wu T, Ouzhuluobu Basang, Ciwangsangbu Danzengduojie, Chen H, Shi H, Su B (2011) Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Mol Biol Evol 28(2):1075–1081. https://doi.org/10.1093/molbev/msq290

    Article  CAS  PubMed  Google Scholar 

  5. Yang J, Jin ZB, Chen J, Huang XF, Li XM, Liang YB, Mao JY, Chen X, Zheng Z, Bakshi A, Zheng DD, Zheng MQ, Wray NR, Visscher PM, Lu F, Qu J (2017) Genetic signatures of high-altitude adaptation in Tibetans. Proc Natl Acad Sci USA 114(16):4189–4194. https://doi.org/10.1073/pnas.1617042114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gayden T, Cadenas AM, Regueiro M, Singh NB, Zhivotovsky LA, Underhill PA, Cavalli-Sforza LL, Herrera RJ (2007) The Himalayas as a directional barrier to gene flow. Am J Hum Genet 80(5):884–894. https://doi.org/10.1086/516757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu D, Lou H, Yuan K, Wang X, Wang Y, Zhang C, Lu Y, Yang X, Deng L, Zhou Y, Feng Q, Hu Y, Ding Q, Yang Y, Li S, Jin L, Guan Y, Su B, Kang L, Xu S (2016) Ancestral origins and genetic history of tibetan highlanders. Am J Hum Genet 99(3):580–594. https://doi.org/10.1016/j.ajhg.2016.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gayden T, Bukhari A, Chennakrishnaiah S, Stojkovic O, Herrera RJ (2012) Y-chromosomal microsatellite diversity in three culturally defined regions of historical Tibet. Forensic Sci Int Genet 6(4):437–446. https://doi.org/10.1016/j.fsigen.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  9. Tsering T, Gayden T, Chennakrishnaiah S, Bukhari A, Garcia-Bertrand R, Herrera RJ (2016) Ethnically distinct populations of historical Tibet exhibit distinct autosomal STR compositions. Gene 578(1):74–84. https://doi.org/10.1016/j.gene.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  10. Zhang C, Lu Y, Feng Q, Wang X, Lou H, Liu J, Ning Z, Yuan K, Wang Y, Zhou Y, Deng L, Liu L, Yang Y, Li S, Ma L, Zhang Z, Jin L, Su B, Kang L, Xu S (2017) Differentiated demographic histories and local adaptations between Sherpas and Tibetans. Genome Biol 18(1):115. https://doi.org/10.1186/s13059-017-1242-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kidd JR, Friedlaender FR, Speed WC, Pakstis AJ, De La Vega FM, Kidd KK (2011) Analyses of a set of 128 ancestry informative single-nucleotide polymorphisms in a global set of 119 population samples. Investig Genet 2(1):1. https://doi.org/10.1186/2041-2223-2-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kidd KK, Speed WC, Pakstis AJ, Furtado MR, Fang R, Madbouly A, Maiers M, Middha M, Friedlaender FR, Kidd JR (2014) Progress toward an efficient panel of SNPs for ancestry inference. Forensic Sci Int Genet 10:23–32. https://doi.org/10.1016/j.fsigen.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  13. Santos NP, Ribeiro-Rodrigues EM, Ribeiro-Dos-Santos AK, Pereira R, Gusmao L, Amorim A, Guerreiro JF, Zago MA, Matte C, Hutz MH, Santos SE (2010) Assessing individual interethnic admixture and population substructure using a 48-insertion-deletion (INSEL) ancestry-informative marker (AIM) panel. Hum Mutat 31(2):184–190. https://doi.org/10.1002/humu.21159

    Article  CAS  PubMed  Google Scholar 

  14. Pereira R, Phillips C, Pinto N, Santos C, dos Santos SE, Amorim A, Carracedo A, Gusmao L (2012) Straightforward inference of ancestry and admixture proportions through ancestry-informative insertion deletion multiplexing. PLoS ONE 7(1):e29684. https://doi.org/10.1371/journal.pone.0029684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaumsegel D, Rothschild MA, Schneider PM (2013) A 21 marker insertion deletion polymorphism panel to study biogeographic ancestry. Forensic Sci Int Genet 7(2):305–312. https://doi.org/10.1016/j.fsigen.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  16. Lan Q, Shen C, Jin X, Guo Y, Xie T, Chen C, Cui W, Fang Y, Yang G, Zhu B (2019) Distinguishing three distinct biogeographic regions with an in-house developed 39-AIM-InDel panel and further admixture proportion estimation for Uyghurs. Electrophoresis 40(11):1525–1534. https://doi.org/10.1002/elps.201800448

    Article  CAS  PubMed  Google Scholar 

  17. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526(7571):68–74. https://doi.org/10.1038/nature15393

    Article  CAS  Google Scholar 

  18. Gouy A, Zieger M (2017) STRAF-A convenient online tool for STR data evaluation in forensic genetics. Forensic Sci Int Genet 30:148–151. https://doi.org/10.1016/j.fsigen.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19(9):1655–1664. https://doi.org/10.1101/gr.094052.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15(5):1179–1191. https://doi.org/10.1111/1755-0998.12387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8(1):103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  23. Sun K, Ye Y, Luo T, Hou Y (2016) Multi-InDel analysis for ancestry inference of sub-populations in China. Sci Rep 6:39797. https://doi.org/10.1038/srep39797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maity B, Nunga SC, Kashyap VK (2003) Genetic polymorphism revealed by 13 tetrameric and 2 pentameric STR loci in four Mongoloid tribal population. Forensic Sci Int 132(3):216–222

    Article  CAS  PubMed  Google Scholar 

  25. Yao HB, Wang CC, Wang J, Tao X, Shang L, Wen SQ, Du Q, Deng Q, Xu B, Huang Y, Wang HD, Li S, Bin C, Ma L, Jin L, Krause J, Li H (2017) Genetic structure of Tibetan populations in Gansu revealed by forensic STR loci. Sci Rep 7:41195. https://doi.org/10.1038/srep41195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Z, Zhang J, Zhang H, Lin Z, Ye J (2018) Genetic polymorphisms in 18 autosomal STR loci in the Tibetan population living in Tibet Chamdo, Southwest China. Int J Legal Med 132(3):733–734. https://doi.org/10.1007/s00414-017-1740-1

    Article  PubMed  Google Scholar 

  27. He G, Li Y, Zou X, Zhang Y, Li H, Wang M, Wu J (2018) X-chromosomal STR-based genetic structure of Sichuan Tibetan minority ethnicity group and its relationships to various groups. Int J Legal Med 132(2):409–413. https://doi.org/10.1007/s00414-017-1672-9

    Article  PubMed  Google Scholar 

  28. Guo Y, Shen C, Meng H, Dong Q, Kong T, Yang C, Wang H, Jin R, Zhu B (2016) Population differentiations and phylogenetic analysis of Tibet and Qinghai Tibetan groups based on 30 InDel Loci. DNA Cell Biol 35(12):787–794. https://doi.org/10.1089/dna.2016.3395

    Article  CAS  PubMed  Google Scholar 

  29. Cao S, Bai P, Zhu W, Chen D, Wang H, Jin B, Zhang L, Liang W (2018) Genetic portrait of 27 Y-STR loci in the Tibetan ethnic population of the Qinghai province of China. Forensic Sci Int Genet 34:e18–e19. https://doi.org/10.1016/j.fsigen.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  30. Wang W (1998) Language and the evolution of modern humans. World Scientific, Singapore, pp 247–262

    Google Scholar 

  31. Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, Zheng H, Liu T, He W, Li K, Luo R, Nie X, Wu H, Zhao M, Cao H, Zou J, Shan Y, Li S, Yang Q, Asan Ni P, Tian G, Xu J, Liu X, Jiang T, Wu R, Zhou G, Tang M, Qin J, Wang T, Feng S, Li G, Huasang Luosang J, Wang W, Chen F, Wang Y, Zheng X, Li Z, Bianba Z, Yang G, Wang X, Tang S, Gao G, Chen Y, Luo Z, Gusang L, Cao Z, Zhang Q, Ouyang W, Ren X, Liang H, Zheng H, Huang Y, Li J, Bolund L, Kristiansen K, Li Y, Zhang Y, Zhang X, Li R, Li S, Yang H, Nielsen R, Wang J, Wang J (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329(5987):75–78. https://doi.org/10.1126/science.1190371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yuasa I, Akane A, Yamamoto T, Matsusue A, Endoh M, Nakagawa M, Umetsu K, Ishikawa T, Iino M (2018) Japaneseplex: a forensic SNP assay for identification of Japanese people using Japanese-specific alleles. Leg Med (Tokyo) 33:17–22. https://doi.org/10.1016/j.legalmed.2018.04.008

    Article  CAS  Google Scholar 

  33. Phillips C, Freire Aradas A, Kriegel AK, Fondevila M, Bulbul O, Santos C, Serrulla Rech F, Perez Carceles MD, Carracedo A, Schneider PM, Lareu MV (2013) Eurasiaplex: a forensic SNP assay for differentiating European and South Asian ancestries. Forensic Sci Int Genet 7(3):359–366. https://doi.org/10.1016/j.fsigen.2013.02.010

    Article  CAS  PubMed  Google Scholar 

  34. Zhao S, Shi CM, Ma L, Liu Q, Liu Y, Wu F, Chi L, Chen H (2019) AIM-SNPtag: a computationally efficient approach for developing ancestry-informative SNP panels. Forensic Sci Int Genet 38:245–253. https://doi.org/10.1016/j.fsigen.2018.10.015

    Article  CAS  PubMed  Google Scholar 

  35. Jin XY, Wei YY, Lan Q, Cui W, Chen C, Guo YX, Fang YT, Zhu BF (2019) A set of novel SNP loci for differentiating continental populations and three Chinese populations. PeerJ 7:e6508. https://doi.org/10.7717/peerj.6508

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (81525015, 81471824), Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (GDUPS, 2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Feng Zhu.

Ethics declarations

Conflict of interest

The authors state that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2019_5202_MOESM1_ESM.png

Fig. S1. Population genetic structure analyses of different continental populations and two studied Tibetan populations at K = 2–7 (a) and the cross-validation errors of each K value (b). Supplementary material 1 (PNG 8517 kb)

Supplementary material 2 (XLSX 9 kb)

Supplementary material 3 (XLSX 9 kb)

Supplementary material 4 (XLSX 20 kb)

Supplementary material 5 (XLSX 20 kb)

Supplementary material 6 (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, XY., Shen, CM., Chen, C. et al. Ancestry informative DIP loci for dissecting genetic structure and ancestry proportions of Qinghai Tibetan and Tibet Tibetan groups. Mol Biol Rep 47, 1079–1087 (2020). https://doi.org/10.1007/s11033-019-05202-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05202-x

Keywords

Navigation