Skip to main content
Log in

Quantitative anatomical comparison of transnasal and transcranial approaches to the clivus

  • Original Article - Neurosurgical Anatomy
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background and objective

The clivus was defined as “no man’s land” in the early 1990s, but since then, multiple approaches have been described to access it. This study is aimed at quantitatively comparing endoscopic transnasal and microsurgical transcranial approaches to the clivus in a preclinical setting, using a recently developed research method.

Methods

Multiple approaches were performed in 5 head and neck specimens that underwent high-resolution computed tomography (CT): endoscopic transnasal (transclival, with hypophysiopexy and with far-medial extension), microsurgical anterolateral (supraorbital, mini-pterional, pterional, pterional transzygomatic, fronto-temporal-orbito-zygomatic), lateral (subtemporal and subtemporal transzygomatic), and posterolateral (retrosigmoid, far-lateral, retrolabyrinthine, translabyrinthine, and transcochlear). An optic neuronavigation system and dedicated software were used to quantify the working volume of each approach and calculate the exposure of different clival regions. Mixed linear models with random intersections were used for statistical analyses.

Results

Endoscopic transnasal approaches showed higher working volume and larger exposure compared with microsurgical transcranial approaches. Increased exposure of the upper clivus was achieved by the transnasal endoscopic transclival approach with intradural hypophysiopexy. Anterolateral microsurgical transcranial approaches provided a direct route to the anterior surface of the posterior clinoid process. The transnasal endoscopic approach with far-medial extension ensured a statistically larger exposure of jugular tubercles as compared with other approaches. Presigmoid approaches provided a relatively limited exposure of the ipsilateral clivus, which increased in proportion to their invasiveness.

Conclusions

This is the first anatomical study that quantitatively compares in a holistic way exposure and working volumes offered by the most used modern approaches to the clivus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CSF:

cerebrospinal fluid

CT:

computed tomography

DICOM:

Digital Imaging and Communications in Medicine

ETCA:

endoscopic transnasal transclival approach

ETCAs:

endoscopic transnasal transclival approaches

ETCAFM:

ETCA with far-medial extension

ETCAH:

ETCA with intradural hypophysiopexy approach

FL:

Far-lateral approach

FTOZ:

Fronto-temporal-orbito-zygomatic approach

GTx-Eyes II – UHN:

Guided Therapeutics software developed at University Health Network – Toronto, Canada

IDEAL:

Innovation Development Exploration Assessment Long term

IACs:

internal acoustic canals

MPT:

mini-pterional approach

MTCAs :

microsurgical transcranial approaches

PT:

pterional approach

PTTZ:

pterional transzygomatic approach

SO:

supraorbital approach

RL:

presigmoid retrolabyrinthine infratentorial approach

RS:

retrosigmoid approach

ST:

subtemporal approach

STTZ:

subtemporal transzygomatic approach

TC:

presigmoid transcochlear infratentorial approach

TL:

presigmoid translabyrinthine infratentorial approach

References

  1. Beer-Furlan A, Abi-Hachem R, Jamshidi AO, Carrau RL, Prevedello DM (2016) Endoscopic trans-sphenoidal surgery for petroclival and clival meningiomas. J Neurosurg Sci 60:495–502

    PubMed  Google Scholar 

  2. Belotti F, Doglietto F, Schreiber A et al (2018) Modular classification of endoscopic endonasal transsphenoidal approaches to sellar region: anatomic quantitative study. World Neurosurg. 109:281–291

    Google Scholar 

  3. Belotti F, Tengattini F, Mattavelli D, Ferrari M, Fiorentino A, Agnelli S, Buffoli B, Schreiber A, Maroldi R, Rodella L, Nicolai P, Fontanella MM, Doglietto F (2019) Transclival approaches for intradural pathology: Historical overview and present scenario. Neurosurgical Review (submitted)

  4. Beltrán-Giner A, Miranda-Lloret P, Plaza-Ramirez E, Simal-Julián J-A, Botella-Asunción C (2013) Full endoscopic endonasal extreme far-medial approach: eustachian tube transposition. J Neurosurg Pediatr 11:584–590

    PubMed  Google Scholar 

  5. Campero A, Campero AA, Socolovsky M, Martins C, Yasuda A, Basso A, Rhoton A (2010) The transzygomatic approach. J Clin Neurosci 17:1428–1433

    PubMed  Google Scholar 

  6. Cook JA, McCulloch P, Blazeby JM, Beard DJ, Marinac-Dabic D, Sedrakyan A, IDEAL Group (2013) IDEAL framework for surgical innovation 3: randomised controlled trials in the assessment stage and evaluations in the long term study stage. BMJ. 346:2820

    Google Scholar 

  7. Daly MJ, Chan H, Nithiananthan S, Qiu J, Barker E, Bachar G, Dixon BJ, Irish JC, Siewerdsen JH (2011) Clinical implementation of intraoperative cone-beam CT in head and neck surgery. Proc. SPIE 7964, Medical Imaging 2011: Visualization, Image-Guided Procedures, and Modeling, 796426 (1 March 2011); https://doi.org/10.1117/12.878976

  8. De Arnaldo Silva Vellutini E, Balsalobre L, Hermann DR, Stamm AC (2014) The endoscopic endonasal approach for extradural and intradural clivus lesions. World Neurosurg. 82:106–115

    Google Scholar 

  9. De Notaris M, Cavallo LM, Prats-Galino A, Esposito I, Benet A, Poblete J, Valente V, Gonzalez JB, Ferrer E, Cappabianca P (2009) Endoscopic endonasal transclival approach and retrosigmoid approach to the clival and petroclival regions. Neurosurgery. 65:42–50

    PubMed  Google Scholar 

  10. Doglietto F, Belotti F, Qiu J et al (2019) Endonasal and transoral approaches to the craniovertebral junction: a quantitative anatomical study. Acta Neurochir Suppl 125:37–44

    PubMed  Google Scholar 

  11. Doglietto F, Ferrari M, Mattavelli D et al (2018) Transnasal endoscopic and lateral approaches to the clivus: a quantitative anatomic study. World Neurosurg 113:659–671

    Google Scholar 

  12. Dolenc VV (1994) Frontotemporal epidural approach to trigeminal neurinomas. Acta Neurochir 130:55–65

    CAS  PubMed  Google Scholar 

  13. Ergina PL, Barkun JS, McCulloch P, Cook JA, Altman DG, IDEAL Group (2013) IDEAL framework for surgical innovation 2: observational studies in the exploration and assessment stages. BMJ. 346:3011

    Google Scholar 

  14. Ferrari M, Schreiber A, Mattavelli D et al (2016) The inferolateral transorbital endoscopic approach: a preclinical anatomic study. World Neurosurg. 90:403–413

    PubMed  Google Scholar 

  15. Ferrari M, Schreiber A, Mattavelli D, Lombardi D, Rampinelli V, Doglietto F, Rodella LF, Nicolai P (2018) Surgical anatomy of the parapharyngeal space: a multiperspective, quantification-based study. Head Neck 41:642–656

    PubMed  Google Scholar 

  16. Figueiredo EG, Deshmukh P, Nakaji P, Crusius MU, Crawford N, Spetzler RF, Preul MC (2007) The minipterional craniotomy: technical description and anatomic assessment. Neurosurgery. 61:256–264

    PubMed  Google Scholar 

  17. Gardner PA, Vaz-Guimaraes F, Jankowitz B, Koutourousiou M, Fernandez-Miranda JC, Wang EW, Snyderman CH (2015) Endoscopic endonasal clipping of intracranial aneurysms: surgical technique and results. World Neurosurg. 84:1380–1393

    PubMed  Google Scholar 

  18. Gruss CL, Al Komser M, Aghi MK, Pletcher SD, Goldberg AN, McDermott M, El-Sayed IH (2014) Risk factors for cerebrospinal leak after endoscopic skull base reconstruction with nasoseptal flap. Otolaryngol Head Neck Surg (United States) 151:516–521

    Google Scholar 

  19. Hadad G, Bassagasteguy L, Carrau RL, Mataza JC, Kassam A, Snyderman CH, Mintz A (2006) A novel reconstructive technique after endoscopic expanded endonasal approaches: vascular pedicle nasoseptal flap. Laryngoscope. 116:1882–1886

    PubMed  Google Scholar 

  20. Jägersberg M, Brodard J, Qiu J, Mansouri A, Doglietto F, Gentili F, Kucharczyk W, Fasel J, Schaller K, Radovanovic I (2017) Quantification of working volumes, exposure, and target-specific maneuverability of the pterional craniotomy and its minimally invasive variants. World Neurosurg 101:710–717

    PubMed  Google Scholar 

  21. Kamat A, Lee JYK, Goldstein GH, Newman JG, Storm PB, Palmer JN, Adappa ND (2015) Reconstructive challenges in the extended endoscopic transclival approach. J Laryngol Otol 129:468–472

    CAS  PubMed  Google Scholar 

  22. Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL (2005) Expanded endonasal approach: the rostrocaudal axis. Part I. Crista galli to the sella turcica. Neurosurg Focus 19:3

    Google Scholar 

  23. Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL (2008) Expanded endonasal approach: the rostrocaudal axis. Part II. Posterior clinoids to the foramen magnum. Neurosurg Focus 19:4

    Google Scholar 

  24. Kassam AB, Gardner P, Snyderman C, Mintz A, Carrau R (2005) Expanded endonasal approach: fully endoscopic, completely transnasal approach to the middle third of the clivus, petrous bone, middle cranial fossa, and infratemporal fossa. Neurosurg Focus 19:6

    Google Scholar 

  25. Kassam AB, Prevedello DM, Carrau RRL et al (2011) Endoscopic endonasal skull base surgery: analysis of complications in the authors’ initial 800 patients. J Neurosurg 144:1544–1568

    Google Scholar 

  26. Kassam AB, Prevedello DM, Thomas A, Gardner P, Mintz A, Snyderman C, Carrau R (2008) Endoscopic endonasal pituitary transposition for a transdorsum sellae approach to the interpeduncular cistern. Neurosurgery. 62:57–72

    PubMed  Google Scholar 

  27. Kim YH, Jeon C, Se Y-B et al (2017) Clinical outcomes of an endoscopic transclival and transpetrosal approach for primary skull base malignancies involving the clivus. J Neurosurg 128:1454–1462

    PubMed  Google Scholar 

  28. Koutourousiou M, Fernandez-Miranda JC, Vaz-Guimaraes Filho F, de Almeida JR, Wang EW, Snyderman CH, Gardner PA (2017) Outcomes of Endonasal and lateral approaches to Petroclival Meningiomas. World Neurosurg. 99:500–517

    PubMed  Google Scholar 

  29. Mangussi-Gomes J, Beer-Furlan A, Balsalobre L, Vellutini EAS, Stamm AC (2016) Endoscopic endonasal management of skull base chordomas: surgical technique, nuances, and pitfalls. Otolaryngol Clin N Am 49:167–182

    Google Scholar 

  30. McCulloch P, Altman DG, Campbell WB, Flum DR, Glasziou P, Marshall JC, Nicholl J (2009) No surgical innovation without evaluation: the IDEAL recommendations. Lancet. 374:1105–1112

    PubMed  Google Scholar 

  31. Mesquita Filho PM, Ditzel Filho LFS, Prevedello DM, Martinez CAN, Fiore ME, Dolci RLL, Otto BA, Carrau RL (2014) Endoscopic endonasal surgical management of chondrosarcomas with cerebellopontine angle extension. Neurosurg Focus 37:13

    Google Scholar 

  32. Morera VA, Fernandez-Miranda JC, Prevedello DM, Madhok R, Barges-Coll J, Gardner P, Carrau R, Snyderman CH, Rhoton AL, Kassam AB (2010) “Far-medial” expanded endonasal approach to the inferior third of the clivus: the transcondylar and transjugular tubercle approaches. Neurosurgery. 66:211–220

    PubMed  Google Scholar 

  33. Nutik SL (1998) Pterional craniotomy via a transcavernous approach for the treatment of low-lying distal basilar artery aneurysms. J Neurosurg 89:921–926

    CAS  PubMed  Google Scholar 

  34. Perneczky A (1999) Key-hole concept in neurosurgery. Springer-Verlag, Vienna, pp 37–95

    Google Scholar 

  35. Qiu J, Radovanovic I, Gentili F, Ravichandiran M, Doglietto F, Fontanella MM, Zadeh G, Kucharczyk W, Belotti F, Agur A (2017) Quantitative comparison of cranial approaches in the anatomy laboratory: a neuronavigation based research method. World J Methodol 7:139–147

    PubMed  PubMed Central  Google Scholar 

  36. Rhoton J (2000) The far-lateral approach and its transcondylar, supracondylar, and paracondylar extensions. Neurosurgery. 47:195–209

    Google Scholar 

  37. Samii M, Knosp E (1992) Approaches to the clivus. Approaches to no man’s land. Springer-Verlag, Berlin Heidelberg, pp 1–6

    Google Scholar 

  38. Schmidt R, Singh K (2010) Meshmixer: an interface for rapid mesh composition. ACM SIGGRAPH. https://doi.org/10.1145/1837026.1837034

  39. Schreiber A, Ferrari M, Rampinelli V, Doglietto F, Belotti F, Lancini D, Ravanelli M, Rodella LF, Fontanella MM, Nicolai P (2017) Modular endoscopic medial maxillectomies: quantitative analysis of surgical exposure in a preclinical setting. World Neurosurg. 100:44–55

    PubMed  Google Scholar 

  40. Sodhi HBS, Singla N, Gupta SK (2015) Posterior clinoid meningioma: a case report with discussion on terminology and surgical approach. Surg Neurol Int 6:21

    PubMed  PubMed Central  Google Scholar 

  41. Ustun ME, Buyukmumcu M, Ulku CH, Guney Ö, Salbacak A (2006) Transzygomatic-subtemporal approach for middle meningeal-to-P2 segment of the posterior cerebral artery bypass: an anatomical and technical study. Skull Base 16:39–44

    PubMed  PubMed Central  Google Scholar 

  42. Van Furth WR, Agur AMR, Woolridge N, Cusimano MD (2006) The orbitozygomatic approach. Neurosurgery. 58:103–107

    Google Scholar 

  43. Vender JR (2013) Retrosigmoid approach. Oper Tech Otolaryngol Head Neck Surg 45:375–397

    Google Scholar 

  44. Wanibuchi M, Friedman AH, Fukushima T (2009) Photo atlas of skull base dissections. Thieme, Stuttgart, pp 268–288

    Google Scholar 

  45. Yasargil MG (1984) Microneurosurgery, vol 1. Thieme-Stratton, New York, pp 215–233

    Google Scholar 

  46. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 31:1116–1128

    PubMed  Google Scholar 

  47. Zwagerman NT, Wang EW, Shin SS, Chang YF, Fernandez-Miranda JC, Snyderman CH, Gardner PA (2018) Does lumbar drainage reduce postoperative cerebrospinal fluid leak after endoscopic endonasal skull base surgery? A prospective, randomized controlled trial. J Neurosurg 1:1–7

    Google Scholar 

Download references

Acknowledgments

We thank Prof. R. Rezzani, Ph.D., Head of the Section of Anatomy and Pathophysiology of Brescia, for study support, Prof. Giuseppe Lanzino, M.D., for study supervision, and Elisa Colombo, M.S., for her guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Doglietto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals and informed consent

This work was performed according to the ethical standards of our Institutional Review Board. All human cadaveric studies have been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. The manuscript does not contain clinical studies or patient data.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of Topical Collection on Neurosurgical Anatomy

Electronic supplementary material

ESM 1

(DOCX 2.03 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agosti, E., Saraceno, G., Qiu, J. et al. Quantitative anatomical comparison of transnasal and transcranial approaches to the clivus. Acta Neurochir 162, 649–660 (2020). https://doi.org/10.1007/s00701-019-04152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-019-04152-4

Keywords

Navigation