Skip to main content
Log in

Structure of floral nectaries and female-biased nectar production in protandrous species Geranium macrorrhizum and Geranium phaeum

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Nectar is a major floral reward offered to pollinators by plants. In dichogamous plant species, differences in nectar production across sexual phases often occur, but both the male- and female-phase flowers have to attract pollinators to achieve effective pollination. Nectar-producing structures, i.e. floral nectaries, are a key component of floral organisation and architecture, and the knowledge of their structure and function contributes to better understanding of the plant–pollinator interactions. In the present study, we investigated the morphology and structure of nectaries and the nectar production pattern in two protandrous species Geranium macrorrhizum and G. phaeum. The flowers of the studied species have been shown to exhibit varied availability of nectar for insect visitors. Their nectaries differ in the shape, size and thickness. The other differences include the localisation of the stomatal field, the size and number of nectarostomata, the presence of non-glandular and glandular trichomes, the presence of tannin idioblasts, the mode of secretion and the occurrence of plastids functioning probably as autophagosomes and autolysosomes, whose presence in nectary cells has been described for the first time. The flowers of the studied species started nectar secretion in the non-receptive phase before pollen presentation and nectar was produced throughout both sexual phases. The nectar production was gender biased towards the female phase in the nectar amount, nectar sugar concentration and total sugar secreted in the nectar. We postulate that the nectar production patterns in G. phaeum and G. macrorrhizum might have evolved as a response to pollinators’ pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aedo C, Aldasoro JJ, Navarro C (1998a) Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann Missouri Bot Gard 85:594–630

    Google Scholar 

  • Aedo C, Garmendia FM, Pando F (1998b) World checklist of Geranium L. (Geraniaceae). Anales Jard Bot Madrid 56:211–252

    Google Scholar 

  • Aedo C, Fiz O, Alarcón ML, Navarro C, Aldasoro JJ (2005) Taxonomic revision of Geranium sect. Dissecta (Geraniaceae). Syst Bot 30:533–558

    Google Scholar 

  • Albers F, Van der Walt JJA (2007) Geraniaceae. In: Kubitzki K (ed) The families and genera of vascular plants IX. Springer, Heidelberg, pp 157–167

    Google Scholar 

  • Aldasoro JJ, Aedo C, Navarro C (2000) Insect attracting structure on Erodium petals (Geraniaceae). Plant Biol 2:471–481

    Google Scholar 

  • Aldasoro JJ, Navarro C, Vargas P, Aedo C (2001) Anatomy, morphology, and cladistic analysis of Monsonia L. (Geraniaceae). Anales Jard Bot Madrid 59:75–100

    Google Scholar 

  • Aldasoro JJ, Navarro C, Vargas P, Saez L, Aedo C (2002) California, a new genus of Geraniaceae endemic to the southwest of North America. Anales Jard Bot Madrid 59:209–216

    Google Scholar 

  • Antoń S, Denisow B (2014) Nectar production and carbohydrate composition across floral sexual phases: contrasting pattern in two protandrous Aconitum species (Delphinieae, Ranunculaceae). Flora 209:464–470

    Google Scholar 

  • Antoń S, Denisow B, Komoń-Janczara E, Targoński Z (2017) Nectary and gender-biased nectar production in dichogamous Chamaenerion angustifolium (L.) Scop. (Onagraceae). Plant Species Biol 4:380–391

    Google Scholar 

  • APG IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20

    Google Scholar 

  • Carlson JE, Harms KE (2006) The evolution of gander-biased nectar production in hermaphroditic plants. Bot Rev 72:179–205

    Google Scholar 

  • Chalcoff VR, Gleiser G, Ezcurra C, Aizen MA (2017) Pollinator type and secondarily climate are related to nectar sugar composition across the angiosperms. Evol Ecol 32:585–602

    Google Scholar 

  • da Silva Pereira P, de Almeida Gonçalves L, da Silva MJ, Rezende MH (2018) Extrafloral nectaries of four varieties of Chamaecrista ramosa (Vogel) HS Irwin & Barneby (Fabaceae): anatomy, chemical nature, mechanisms of nectar secretion, and elimination. Protoplasma 255:1635–1647

    PubMed  Google Scholar 

  • Denisow B, Masierowska M, Antoń S (2016) Floral nectar production and carbohydrate composition and the structure of receptacular nectaries in the invasive plant Bunias orientalis L. (Brassicaceae). Protoplasma 253:1489–1501

    CAS  PubMed  Google Scholar 

  • Dmitruk M, Weryszko-Chmielewska E (2013) The morphology and ultrastructure of the nectaries of marrow (Cucurbita pepo L. convar. giromontiina). Acta Agrobot 66:11–22

    Google Scholar 

  • Endress PK (2010) Synorganisation without organ fusion in the flowers of Geranium robertianum (Geraniaceae) and its not so trivial obdiplostemony. Ann Bot 106:687–695

    PubMed  PubMed Central  Google Scholar 

  • Fiz O, Vargas P, Alarcón M, Aedo C, Garcia JL, Aldasoro JJ (2008) Phylogeny and historical biogeography of Geraniaceae in relation to climate changes and pollination ecology. Syst Bot 33:326–334

    Google Scholar 

  • Fiz-Palacios O, Vargas P, Vila R, Papadopulos AS, Aldasoro JJ (2010) The uneven phylogeny and biogeography of Erodium (Geraniaceae): radiations in the Mediterranean and recent recurrent intercontinental colonisation. Ann Bot 106:871–884

    PubMed  PubMed Central  Google Scholar 

  • Ghobadi M, Agosti D, Mahdavi M, Jouri MH (2015) Effects of harvester ants’ nest activity (Messor spp.) on structure and function of plant community in a steppe rangeland (Case Study: Roodshoor, Saveh, Iran). J Rangel Sci 5:269–283

    Google Scholar 

  • Gómez PV, Aldasoro JJ, Navarro C (2001) Anatomy, morphology, and cladistic analysis of Monsonia L. Anales Jard Bot Madrid 59:75–100

    Google Scholar 

  • Gotelli MM, Galati BG, Medan D (2016) Morphological and ultrastructural studies of floral nectaries in Rhamnaceae, b. J Torrey Bot Soc 144:63–74

    Google Scholar 

  • Goulson D (1999) Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspect Plant Ecol Syst 2:185–209

    Google Scholar 

  • Jabłoński B (2002) Notes on the method to investigate nectar secretion rate in flowers. J Apic Sci 46:117–124

    Google Scholar 

  • Jeiter J, Weigend M, Hilger HH (2017a) Geraniales flowers revisited: evolutionary trends in floral nectaries. Ann Bot 119:395–408

    PubMed  Google Scholar 

  • Jeiter J, Hilger HH, Smets EF, Weigend M (2017b) The relationship between nectaries and floral architecture: a case study in Geraniaceae and Hypseocharitaceae. Ann Bot 120:791–803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones CS, Cardon ZG, Czaja AD (2003) A phylogenetic view of low-level CAM in Pelargonium (Geraniaceae). Am J Bot 90:135–142

    CAS  PubMed  Google Scholar 

  • Jouhet J, Maréchal E, Baldan B, Bligny R, Joyard J, Block MA (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167:863–874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knuth P (1906) Handbook of flower pollination. Clarendon Press, Oxford

    Google Scholar 

  • Konarska A, Weryszko-Chmielewska E (2016) Micromorphology, anatomy and ultrastructure of nectaries in two types of flowers of Citrus limon cv.‘Ponderosa’. Acta Sci Pol Hortoru Cultus 15:87–96

    Google Scholar 

  • Kozuharova E (2002) Co-evolutinary trends in the pollination of Geranium L. species in the Bulgarian flora. CR Acad Bulg Sci 55:69–72

    Google Scholar 

  • Lattar EC, Galati BG, Carrera CS, Ferrucci MS (2018) Floral nectaries of Heliocarpus popayanensis and Luehea divaricata (Malvaceae-Grewioideae): structure and ultrastructure. Aust J Bot 66:59–73

    Google Scholar 

  • Lindquist E, Solymosi K, Aronsson H (2016) Vesicles are persistent features of different plastids. Traffic 17:1125–1138

    CAS  PubMed  Google Scholar 

  • Link DA (1989) Die nektarien der Geraniales – morphologie, anatomie, histologie, blütenökologische bedeutung und konsequenzen für die systematik. Dissertation, Universität Mainz, Germany

  • Link DA (1990) The nectaries of Geraniaceae. In: Vorster P (ed) Proceedings of the International Geraniaceae Symposium. Stellenbosch University, South Africa, pp 215–225

    Google Scholar 

  • Machado SR, Gregório EA, Rodrigues TM (2018) Structural associations between organelle membranes in nectary parenchyma cells. Planta 247:1067–1076

    CAS  PubMed  Google Scholar 

  • Marcussen T, Meseguer AS (2017) Species-level phylogeny, fruit evolution and diversification history of Geranium (Geraniaceae). Mol Phylogenet Evol 110:134–149

    PubMed  Google Scholar 

  • Masierowska M (2012) Floral phenology, floral rewards and insect visitation in an ornamental species Geranium platypetalum Fisch. & CA Mey., Geraniaceae. Acta Agrobot 65:22–36

    Google Scholar 

  • Masierowska M, Stawiarz E, Rozwałka R (2018) Perennial ground cover plants as a food source for urban pollinators: a case of Geranium species. Urban For Urban Gree 32:185–194

    Google Scholar 

  • Maurizio A, Grafl J (1969) Das Trachtpflanzenbuch. Ehrenwirth Verlag, München

    Google Scholar 

  • McDonald DJ, Van der Walt JJA (1992) Observations on the pollination of Pelargonium tricolor, section Campylia (Geraniaceae). S African J Bot 58:386–392

    Google Scholar 

  • Mehrshahi P, Stefano G, Andaloro JM, Brandizzi F, Froehlich JE, DellaPenna D (2013) Transorganellar complementation redefines the biochemical continuity of endoplasmic reticulum and chloroplasts. PNAS 110:12126–12131

    CAS  PubMed  Google Scholar 

  • Nepi M, Stpiczyńska M (2008) The complexity of nectar: secretion and resorption dynamically regulate nectar features. Naturwissenschaften 95:177–184

    CAS  PubMed  Google Scholar 

  • Nocentini D, Pacini E, Guarnieri M, Martelli D, Nepi M (2013) Intrapopulation heterogeneity in floral nectar attributes and foraging insects of an ecotonal Mediterranean species. Plant Ecol 214:799–809

    Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure. Principles and selected methods. Termacarphi Pty LTT, Melbourne

    Google Scholar 

  • Olivencia AO, Alkazar JAD (1993) Floral rewards in some Scrophularia species (Scrophulariaceae) from the Iberian Paninsula and the Balearic Islands. Plant Syst Evol 184:139–158

    Google Scholar 

  • Pacini E, Nepi M (2007) Nectar production and presentation. In: Nicolson S, Nepi M, Pacini E (eds) Nectar and nectaries. Springer, Netherlands, pp 167–214

    Google Scholar 

  • Pacini E, Nepi M, Vesprini JL (2003) Nectar biodiversity: a short review. Plant Syst Evol 238:7–22

    CAS  Google Scholar 

  • Parra-Vega V, Corral-Martínez P, Rivas-Sendra A, Seguí-Simarro JM (2015) Formation and excretion of autophagic plastids (plastolysomes) in Brassica napus embryogenic microspores. Front Plant Sci 6:94

    PubMed  PubMed Central  Google Scholar 

  • Petanidou T, Goethals V, Smets E (2000) Nectary structure of Labiatae in relation to their nectar secretion and characteristics in a Mediterranean shrub community: does flowering time matter? Plant Syst Evol 225:103–118

    Google Scholar 

  • Philipp M (1985) Reproductive Biology of Geranium sessiliflorum. 1. Flower and Flowering Biology. New Zeal J Bot 23:567–580

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Riaño T, Ortega-Olivencia A, López J, Pérez-Bote JL, Navarro-Pérez ML (2014) Main sugar composition of floral nectar in three species groups of Scrophularia (Scrophulariaceae) with different principal pollinators. Plant Biol 16:1075–1086

    PubMed  Google Scholar 

  • Röschenbleck J, Albers F, Müller K, Weinl S, Kudla J (2014) Phylogenetics, character evolution and a subgeneric revision of the genus Pelargonium (Geraniaceae). Phytotaxa 159:31–76

    Google Scholar 

  • Slanis AC, Grau A (2001) El genero Hypseocharis (Oxalidaceae) en la Argentina. Darwiniana 39:343–352

    Google Scholar 

  • Smets EF, Cresens EM (1988) Types of floral nectaries and the concepts ‘character’and ‘character-state’—a reconsideration. Acta Bot Neerl 37:121–128

    Google Scholar 

  • Stevenson PC, Nicolson SW, Wright GA (2017) Plant secondary metabolites in nectar: impacts on pollinators and ecological functions. Funct Ecol 31:65–75

    Google Scholar 

  • Stpiczyńska M, Nepi M, Zych M (2015) Nectaries and male-biased nectar production in protandrous flowers of a perennial umbellifer Angelica sylvestris L.(Apiaceae). Plant Syst Evol 301:1099–1113

    Google Scholar 

  • Touloumenidou T, Bakker FT, Albers F (2007) The phylogeny of Monsonia L. (Geraniaceae). Plant Syst Evol 264:1–14

    CAS  Google Scholar 

  • van Doorn WGV, Papini A (2013) Ultrastructure of autophagy in plant cells. Autophagy 9:1922–1936

    PubMed  Google Scholar 

  • Varga S, Nuortila C, Kytöviita NM (2013) Nectar sugar production across floral phases in the gynodioecious protandrous plant Geranium sylvaticum. PLoS ONE 8(4):e62575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vassilyev AE (2010) On the mechanisms of nectar secretion: revisited. Ann Bot 105:349–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel S (1998) Remarkable nectaries: structure, ecology, organophyletic perspectives, IV. Miscellaneous cases. Flora 193:225–248

    Google Scholar 

  • Weryszko-Chmielewska E, Masierowska ML, Konarska A (2003) Characteristics of floral nectaries and nectar in two species of Crataegus (Rosaceae). Plant Syst Evol 238:33–41

    Google Scholar 

  • Willmer P (2011) Pollination and floral ecology. Princeton University Press

  • Willson MF, Miller LJ, Rathcke BJ (1979) Floral display in Phlox and Geranium: adaptive aspects. Evolution 33:52–63

    PubMed  Google Scholar 

  • Wise RR (2007) The diversity of plastid form and function. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer, Dordrecht, pp 3–26

    Google Scholar 

  • Wist TJ, Davis AR (2008) Floral structure and dynamics of nectar production in Echinacea pallida var. angustifolia (Asteraceae). Int J Plant Sci 169:708–722

    Google Scholar 

  • Yeo PF (1973) The biology and systematics of Geranium, sections Anemonifolia Knuth and Ruberta Dum. Bot J Linn Soc 67:285–346

    Google Scholar 

  • Yeo PF (2004) The morphology and affinities of Geranium sections Lucida and Unguiculata. Bot J Linn Soc 144:409–429

    Google Scholar 

  • Karl Peter C, Gudrun Johanna Friedrichs, Stefan El-Gammal, (2007) Ultrastructural Evidence for a Dual Function of the Phloem and Programmed Cell Death in the Floral Nectary of Digitalis purpurea. Annals of Botany 99 (4):593-607

    PubMed  PubMed Central  Google Scholar 

  • Wiśniewska N, Bohdanowicz J, Kowalkowska AK (2015) Micromorphology and ultrastructure of the floral nectaries of Viola odorata L. (Violaceae). Mod Phytomorphol 7:59-66

  • Scheidné Nagy Tóth E, Orosz Kovács Z (2001) Glandular tissue of the nectary. In: Orosz Kovács Z (ed) Floral biology of apple. University of Pécs, Pécs, pp 59–64

  • Yeo PF (1970) The Geranium palmatum group in Madeira and the Canary Isles. J R Hort Soc 95: 410-414

Download references

Acknowledgements

We are greatly indebted to Magda Kamińska PhD for her skilled technical assistance. Transmission electron microscopy studies were performed at the Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Warsaw, Poland.

Funding

This research was supported financially by the Ministry of Science and Higher Education of Poland as part of the statutory activities (projects OKB/DS/8 and OKB/DS/1) of the Department of Botany, University of Life Sciences in Lublin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzena Masierowska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Alexander Schulz

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konarska, A., Masierowska, M. Structure of floral nectaries and female-biased nectar production in protandrous species Geranium macrorrhizum and Geranium phaeum. Protoplasma 257, 501–523 (2020). https://doi.org/10.1007/s00709-019-01454-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-019-01454-3

Keywords

Navigation