Skip to main content
Log in

Clinical significance of evaluating coronary atherosclerosis in adult patients with hypertrophic cardiomyopathy who have chest pain

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

Chest pain is a common symptom in patients with hypertrophic cardiomyopathy (HCM), causing difficulty determining whether there is coexistent coronary artery disease (CAD). We investigated whether coronary computed tomography angiography (CCTA) can assess the prevalence and clinical significance of CAD in adult patients with HCM showing chest pain through longitudinal follow-up.

Methods

In 238 adult patients with HCM, who underwent CCTA for chest pain, we analyzed the degree of stenosis and adverse plaque characteristics (APCs) as CCTA variables. Three prediction models for adverse cardiovascular events (ACEs: all-cause mortality, myocardial infarction, unstable angina, heart failure, implantable cardioverter-defibrillator implantation, and stroke) were assessed using the combination of clinical risk factors, echocardiographic parameters, and CCTA variables.

Results

The prevalence of obstructive CAD (≥ 50% in luminal stenosis) and APC was 14.7% and 18.9%, respectively. During the follow-up period (median, 37 months; range, 2–108 months), there were 31 occurrences of ACEs (13.0%). Using multivariate Cox regression analysis, age, atrial fibrillation, low ejection fraction, obstructive CAD, and APCs were associated with ACEs (all p < 0.05). Among the prediction models for ACEs, the area under the curve (AUC) was higher (AUC = 0.92) when CCTA variables were added to the clinical (AUC = 0.84) and echocardiographic factors (AUC = 0.88) (p < 0.001).

Conclusions

Using CCTA, about 20% of symptomatic HCM patients were associated with clinically significant atherosclerosis. Adding these CCTA variables to the clinical and echocardiographic variables may increase the predictions of ACEs; therefore, evaluating coronary atherosclerosis using CCTA may be helpful for symptomatic HCM patients.

Key Points

• Chest pain in adult patients with hypertrophic cardiomyopathy (HCM) remains challenging to distinguish from coronary artery disease.

• Coronary computed tomography angiography (CCTA) can assess the severity and characteristics of coronary atherosclerosis in symptomatic HCM patients.

• Adding CCTA variables to clinical and echocardiographic factors may increase the predictions of adverse cardiac events in HCM patients, and thus evaluating coronary atherosclerosis using CCTA may be helpful for HCM patients with chest pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACEs:

Adverse cardiovascular events

AF:

Atrial fibrillation

APCs:

Adverse plaque characteristics

AUC:

Area under the curves

CAD:

Coronary artery disease

CCTA:

Coronary computed tomography angiography

CI:

Confidence interval

ECG:

Electrocardiography

EF:

Ejection fraction

HCM:

Hypertrophic cardiomyopathy

HR:

Hazard ratio

HU:

Hounsfield units

ICD:

Implantable cardioverter-defibrillator

LV:

Left ventricle

MI:

Myocardial infarction

ROC:

Receiver-operator characteristic

UA:

Unstable angina

References

  1. Maron BJ (2002) Hypertrophic cardiomyopathy: a systematic review. JAMA 287:1308–1320

    Google Scholar 

  2. McKenna WJ, Camm AJ (1989) Sudden death in hypertrophic cardiomyopathy. Assessment of patients at high risk. Circulation 80:1489–1492

    Article  CAS  PubMed  Google Scholar 

  3. Spirito P, Chiarella F, Carratino L, Berisso MZ, Bellotti P, Vecchio C (1989) Clinical course and prognosis of hypertrophic cardiomyopathy in an outpatient population. N Engl J Med 320:749–755

    Article  CAS  PubMed  Google Scholar 

  4. Kofflard MJ, Waldstein DJ, Vos J, ten Cate FJ (1993) Prognosis in hypertrophic cardiomyopathy observed in a large clinic population. Am J Cardiol 72:939–943

    Article  CAS  PubMed  Google Scholar 

  5. Maron BJ, Casey SA, Hauser RG, Aeppli DM (2003) Clinical course of hypertrophic cardiomyopathy with survival to advanced age. J Am Coll Cardiol 42:882–888

    Article  PubMed  Google Scholar 

  6. Maron BJ, Bonow RO, Cannon RO 3rd, Leon MB, Epstein SE (1987) Hypertrophic cardiomyopathy. Interrelations of clinical manifestations, pathophysiology, and therapy (1). N Engl J Med 316:780–789

    Article  CAS  PubMed  Google Scholar 

  7. Ito C, Asano H, Shimada E, Yamane Y (1983) Hypertrophic cardiomyopathy presenting ECG changes mimicking myocardial infarction during 18 years: report of a case. J Cardiogr 13:1041–1049

    CAS  PubMed  Google Scholar 

  8. Luzza F, Carerj S, Oreto G (2004) Hypertrophic cardiomyopathy with persistent ST segment elevation simulating acute myocardial infarction. Heart 90:380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao L, Ma X, Ge H et al (2015) Diagnostic performance of computed tomography for detection of concomitant coronary disease in hypertrophic cardiomyopathy. Eur Radiol 25:767–775

    Article  PubMed  Google Scholar 

  10. Chun EJ, Choi SI, Jin KN et al (2010) Hypertrophic cardiomyopathy: assessment with MR imaging and multidetector CT. Radiographics 30:1309–1328

    Article  PubMed  Google Scholar 

  11. Voros S, Rinehart S, Qian Z et al (2011) Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging 4:537–548

    Article  PubMed  Google Scholar 

  12. Authors/Task Force Members, Elliott PM, Anastasakis A et al (2014) 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35:2733–2779

    Article  CAS  Google Scholar 

  13. Rodrigues JC, Rohan S, Ghosh Dastidar A et al (2017) Hypertensive heart disease versus hypertrophic cardiomyopathy: multi-parametric cardiovascular magnetic resonance discriminators when end-diastolic wall thickness ≥ 15 mm. Eur Radiol 27:1125–1135

  14. Messroghli DR, Moon JC, Ferreira VM et al (2018) Correction to: Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 20:9

    Article  PubMed  PubMed Central  Google Scholar 

  15. Anderson KM, Odell PM, Wilson PW, Kannel WB (1991) Cardiovascular disease risk profiles. Am Heart J 121:293–298

    Article  CAS  PubMed  Google Scholar 

  16. Sohn DW, Chai IH, Lee DJ et al (1997) Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol 30:474–480

    Article  CAS  PubMed  Google Scholar 

  17. Maurovich-Horvat P, Schlett CL, Alkadhi H et al (2012) The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging 5:1243–1252

    Article  PubMed  Google Scholar 

  18. Motoyama S, Sarai M, Harigaya H et al (2009) Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 54:49–57

    Article  PubMed  Google Scholar 

  19. Nakazato R, Otake H, Konishi A et al (2015) Atherosclerotic plaque characterization by CT angiography for identification of high-risk coronary artery lesions: a comparison to optical coherence tomography. Eur Heart J Cardiovasc Imaging 16:373–379

    Article  PubMed  Google Scholar 

  20. Mintz GS, Nissen SE, Anderson WD et al (2001) American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 37:1478–1492

    Article  CAS  PubMed  Google Scholar 

  21. Nishimura RA, Holmes DR Jr (2004) Clinical practice. Hypertrophic obstructive cardiomyopathy. N Engl J Med 350:1320–1327

    Article  CAS  PubMed  Google Scholar 

  22. Tio RA, Van Gelder IC, Boonstra PW, Crijns HJ (1997) Myocardial bridging in a survivor of sudden cardiac near-death: role of intracoronary doppler flow measurements and angiography during dobutamine stress in the clinical evaluation. Heart 77:280–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rowin EJ, Maron BJ, Olivotto I, Maron MS (2017) Role of exercise testing in hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 10:1374–1386

    Article  PubMed  Google Scholar 

  24. O’Gara PT, Bonow RO, Maron BJ et al (1987) Myocardial perfusion abnormalities in patients with hypertrophic cardiomyopathy: assessment with thallium-201 emission computed tomography. Circulation 76:1214–1223

    Article  PubMed  Google Scholar 

  25. Cannon RO 3rd, Rosing DR, Maron BJ et al (1985) Myocardial ischemia in patients with hypertrophic cardiomyopathy: contribution of inadequate vasodilator reserve and elevated left ventricular filling pressures. Circulation 71:234–243

    Article  PubMed  Google Scholar 

  26. Maron BJ, Wolfson JK, Epstein SE, Roberts WC (1986) Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol 8:545–557

    Article  CAS  PubMed  Google Scholar 

  27. Sorajja P, Ommen SR, Nishimura RA, Gersh BJ, Berger PB, Tajik AJ (2003) Adverse prognosis of patients with hypertrophic cardiomyopathy who have epicardial coronary artery disease. Circulation 108:2342–2348

    Article  PubMed  Google Scholar 

  28. Lazzeroni E, Rolli A, Aurier E, Botti G (1992) Clinical significance of coronary artery disease in hypertrophic cardiomyopathy. Am J Cardiol 70:499–501

    Article  CAS  PubMed  Google Scholar 

  29. Cokkinos DV, Krajcer Z, Leachman RD (1985) Hypertrophic cardiomyopathy and associated coronary artery disease. Tex Heart Inst J 12:147–151

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Alegria JR, Herrmann J, Holmes DR Jr, Lerman A, Rihal CS (2005) Myocardial bridging. Eur Heart J 26:1159–1168

    Article  Google Scholar 

  31. Shariat M, Thavendiranathan P, Nguyen E et al (2014) Utility of coronary CT angiography in outpatients with hypertrophic cardiomyopathy presenting with angina symptoms. J Cardiovasc Comput Tomogr 8:429–437

    Article  PubMed  Google Scholar 

  32. Sorajja P, Ommen SR, Nishimura RA, Gersh BJ, Tajik AJ, Holmes DR (2003) Myocardial bridging in adult patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 42:889–894

    Article  PubMed  Google Scholar 

  33. Davies MJ (1996) Detecting vulnerable coronary plaques. Lancet 347:1422–1423

    Article  CAS  PubMed  Google Scholar 

  34. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    Article  CAS  Google Scholar 

  35. Puchner SB, Liu T, Mayrhofer T et al (2014) High-risk plaque detected on coronary CT angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain: results from the ROMICAT-II trial. J Am Coll Cardiol 64:684–692

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shapiro LM, Zezulka A (1983) Hypertrophic cardiomyopathy: a common disease with a good prognosis. Five year experience of a district general hospital. Br Heart J 50:530–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maron BJ, Roberts WC, Epstein SE (1982) Sudden death in hypertrophic cardiomyopathy: a profile of 78 patients. Circulation 65:1388–1394

    Article  CAS  PubMed  Google Scholar 

  38. Maron BJ, Rowin EJ, Casey SA et al (2013) Risk stratification and outcome of patients with hypertrophic cardiomyopathy >=60 years of age. Circulation 127:585–593

    Article  PubMed  Google Scholar 

  39. Sakamoto T, Amano K, Hada Y et al (1986) Asymmetric apical hypertrophy: ten years experience. Postgrad Med J 62:567–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation grant NRF-2015R1D1A1A01059717 funded by the Korea government (MEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Ju Chun.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Kyung Won Lee.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

Yongho Jeon, PhD (Department of Applied statistics, College of Commerce and Economics, Yonsei University), one of the authors, has contributed to the statistical analysis.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• observational

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, Y.J., Lee, J.H., Yoo, J.Y. et al. Clinical significance of evaluating coronary atherosclerosis in adult patients with hypertrophic cardiomyopathy who have chest pain. Eur Radiol 29, 4593–4602 (2019). https://doi.org/10.1007/s00330-018-5951-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-018-5951-8

Keywords

Navigation