Skip to main content

Advertisement

Log in

Association between a literature-based genetic risk score and bone mineral density of African American women in Women Health Initiative Study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Genetic risk of low BMD in African American women remains unclear. Based on SNPs discovered from a predominantly Caucasian sample, genetic profile was summarized and was found to be significantly associated with BMD variation in African American women.

Introduction

Osteoporosis is largely under-recognized and undertreated in African-American women, the post-fracture morbidity and mortality rates in this racial group is rather high. Since BMD was proved to be highly heritable, based on a comprehensive genome-wide meta-analysis that reported 63 BMD-related single nucleotide polymorphisms (SNPs), we aim to unravel the overall genetic risk for decreased BMD and osteoporosis in African-American women.

Methods

Genotype data of 842 African American women in a Women’s Health Initiative cohort were analyzed. Comprehensive genotype imputation was conducted at the Sanger Imputation Server. Multi-locus genetic risk scores (GRSs) based on 62 BMD-related single-nucleotide polymorphisms (SNPs) were calculated. The association between GRS and BMD was assessed by regression analysis. Longitudinal data was further analyzed using a generalized estimating equation, which helps achieve more efficient and unbiased regression parameters by accounting for the within-subject correlation of responses on dependent variables.

Results

After adjusting for age, body weight, hormone use, and previous fracture, for every unit increase of GRS.FN and GRS.LS, BMD at hip and lumbar spine decreased 0.124 g/cm2 and 0.086 g/cm2, respectively. Collectively, the model accounted for 34.95% of the femoral neck BMD variation and 25.79% of lumbar spine BMD variation. Notably, GRS.FN and GRS.LS accounted for 2.03% and 2.39% of the total explained variance, respectively. The proportion of BMD variation can be explained by GRSs increasing as participants aged.

Conclusions

Genetic risk score was significantly associated with lower BMD in the current study, suggesting that SNPs discovered from prior meta-analysis based on primarily Caucasian population can also explain a considerable proportion of BMD variation in African Americans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data/analyses presented in the current publication are based on the use of study data downloaded from the dbGaP web site, under phs000746 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000746.v2.p3).

Abbreviations

GRS:

Genetic risk score

BMD:

Bone mineral density

SNP:

Single-nucleotide polymorphism

GWAS:

Genome-wide association study

dbGaP:

The database of Genotypes and Phenotypes

WHI:

Women’s Health Initiative

WHI-SHARe:

Women’s Health Initiative – SNP Health Association Resource

References

  1. Sözen T, Özışık L, Başaran NÇ (2017) An overview and management of osteoporosis. Eur J Rheumatol 4:46–56

    PubMed  Google Scholar 

  2. Cauley JA (2013) Public health impact of osteoporosis. J Gerontol A Biol Sci Med Sci 68:1243–1251

    PubMed  PubMed Central  Google Scholar 

  3. Cauley JA (2011) Defining ethnic and racial differences in osteoporosis and fragility fractures. Clin Orthop Relat Res 469:1891–1899

    PubMed  PubMed Central  Google Scholar 

  4. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res 22:465–475

    PubMed  Google Scholar 

  5. Aloia JF, Vaswani A, Yeh JK, Flaster E (1996) Risk for osteoporosis in black women. Calcif Tissue Int 59:415–423

    CAS  PubMed  Google Scholar 

  6. Hochberg MC (2007) Racial differences in bone strength. Trans Am Clin Climatol Assoc 118:305–315

    PubMed  PubMed Central  Google Scholar 

  7. Baron JA, Karagas M, Barrett J, Kniffin W, Malenka D, Mayor M, Keller RB (1996) Basic epidemiology of fractures of the upper and lower limb among Americans over 65 years of age. Epidemiology (Cambridge, Mass) 7:612–618

    CAS  Google Scholar 

  8. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, Dawson-Hughes B (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29:2520–2526

    PubMed  PubMed Central  Google Scholar 

  9. Farmer ME, White LR, Brody JA, Bailey KR (1984) Race and sex differences in hip fracture incidence. Am J Public Health 74:1374–1380

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Baron JA, Barrett J, Malenka D, Fisher E, Kniffin W, Bubolz T, Tosteson T (1994) Racial differences in fracture risk. Epidemiology (Cambridge, Mass) 5:42–47

    CAS  Google Scholar 

  11. (December 1999) Osteoporosis and Related Bone Diseases-- National Resource center Web site.

  12. Bohannon AD (1999) Osteoporosis and African American women. J Womens Health Gend Based Med 8:609–615

    CAS  PubMed  Google Scholar 

  13. Geller SE, Derman R (2001) Knowledge, beliefs, and risk factors for osteoporosis among African-American and Hispanic women. J Natl Med Assoc 93:13–21

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sadler C, Huff M (2007) African-American women: health beliefs, lifestyle, and osteoporosis. Orthop Nurs 26:96–101 quiz 102-3

    PubMed  Google Scholar 

  15. Bronner YL, Hawkins AS, Holt ML, Hossain MB, Rowel RH, Sydnor KL, Divers SP (2006) Models for nutrition education to increase consumption of calcium and dairy products among African Americans. J Nutr 136:1103–1106

    CAS  PubMed  Google Scholar 

  16. Miller RG, Ashar BH, Cohen J, Camp M, Coombs C, Johnson E, Schneyer CR (2005) Disparities in osteoporosis screening between at-risk African-American and white women. J Gen Intern Med 20:847–851

    PubMed  PubMed Central  Google Scholar 

  17. Cheng H, Gary LC, Curtis JR, Saag KG, Kilgore ML, Morrisey MA, Matthews R, Smith W, Yun H, Delzell E (2009) Estimated prevalence and patterns of presumed osteoporosis among older Americans based on Medicare data. Osteoporos Int 20:1507–1515

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kellie SE, Brody JA (1990) Sex-specific and race-specific hip fracture rates. Am J Public Health 80:326–328

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group, Osteoporos Int 4:368–381

    CAS  Google Scholar 

  20. Stewart TL, Ralston SH (2000) Role of genetic factors in the pathogenesis of osteoporosis. J Endocrinol 166:235–245

    CAS  PubMed  Google Scholar 

  21. Arden NK, Spector TD (1997) Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res 12:2076–2081

    CAS  PubMed  Google Scholar 

  22. Michaelsson K, Melhus H, Ferm H, Ahlbom A, Pedersen NL (2005) Genetic liability to fractures in the elderly. Arch Intern Med 165:1825–1830

    PubMed  Google Scholar 

  23. Richards JB, Zheng HF, Spector TD (2012) Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet 13:576–588

    CAS  PubMed  Google Scholar 

  24. Liu Y-J, Zhang L, Papasian CJ, Deng H-W (2014) Genome-wide association studies for osteoporosis: a 2013 update. J Bone Metab 21:99–116

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, Oei L, Albagha OM, Amin N, Kemp JP, Koller DL, Li G, Liu CT, Minster RL, Moayyeri A, Vandenput L, Willner D, Xiao SM, Yerges-Armstrong LM, Zheng HF, Alonso N, Eriksson J, Kammerer CM, Kaptoge SK, Leo PJ, Thorleifsson G, Wilson SG, Wilson JF, Aalto V, Alen M, Aragaki AK, Aspelund T, Center JR, Dailiana Z, Duggan DJ, Garcia M, Garcia-Giralt N, Giroux S, Hallmans G, Hocking LJ, Husted LB, Jameson KA, Khusainova R, Kim GS, Kooperberg C, Koromila T, Kruk M, Laaksonen M, Lacroix AZ, Lee SH, Leung PC, Lewis JR, Masi L, Mencej-Bedrac S, Nguyen TV, Nogues X, Patel MS, Prezelj J, Rose LM, Scollen S, Siggeirsdottir K, Smith AV, Svensson O, Trompet S, Trummer O, van Schoor NM, Woo J, Zhu K, Balcells S, Brandi ML, Buckley BM, Cheng S, Christiansen C, Cooper C, Dedoussis G, Ford I, Frost M, Goltzman D, Gonzalez-Macias J, Kahonen M, Karlsson M, Khusnutdinova E, Koh JM, Kollia P, Langdahl BL, Leslie WD, Lips P, Ljunggren O, Lorenc RS, Marc J, Mellstrom D, Obermayer-Pietsch B, Olmos JM, Pettersson-Kymmer U, Reid DM, Riancho JA, Ridker PM, Rousseau F, Slagboom PE, Tang NL et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44:491–501

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Xiao X, Roohani D, Wu Q (2018) Genetic profiling of decreased bone mineral density in an independent sample of Caucasian women. Osteoporos Int 29:1807–1814

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Alam NM, Archer JA, Lee E (2004) Osteoporotic fragility fractures in African Americans: under-recognized and undertreated. J Natl Med Assoc 96:1640–1645

    PubMed  PubMed Central  Google Scholar 

  28. Berger C, Langsetmo L, Joseph L, Hanley DA, Davison KS, Josse RG, Prior JC, Kreiger N, Tenenhouse A, Goltzman D (2009) Association between change in BMD and fragility fracture in women and men. J Bone Miner Res 24:361–370

    PubMed  PubMed Central  Google Scholar 

  29. Nguyen TV, Center JR, Eisman JA (2005) Femoral neck bone loss predicts fracture risk independent of baseline BMD. J Bone Miner Res 20:1195–1201

    PubMed  Google Scholar 

  30. Ahmed LA, Emaus N, Berntsen GK, Bjornerem A, Fonnebo V, Jorgensen L, Schirmer H, Stormer J, Joakimsen RM (2010) Bone loss and the risk of non-vertebral fractures in women and men: the Tromso study. Osteoporos Int 21:1503–1511

    CAS  PubMed  Google Scholar 

  31. Makovey J, Nguyen TV, Naganathan V, Wark JD, Sambrook PN (2007) Genetic Effects on bone loss in peri- and postmenopausal women: a longitudinal twin study. J Bone Miner Res 22:1773–1780

    PubMed  Google Scholar 

  32. Shaffer JR, Kammerer CM, Bruder JM, Cole SA, Dyer TD, Almasy L, MacCluer JW, Blangero J, Bauer RL, Mitchell BD (2008) Genetic influences on bone loss in the San Antonio Family Osteoporosis study. Osteoporos Int 19:1759–1767

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhai G, Andrew T, Kato BS, Blake GM, Spector TD (2009) Genetic and environmental determinants on bone loss in postmenopausal Caucasian women: a 14-year longitudinal twin study. Osteoporos Int 20:949–953

    CAS  PubMed  Google Scholar 

  34. (1998) Design of the Women’s Health Initiative clinical trial and observational study, Control Clin Trials.19, 61-109.

  35. Osteoporosis, W. S. G. o. t. P. a. M. o. (2003) Prevention and management of osteoporosis: report of a WHO scientific group. in

  36. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34:816–834

    PubMed  PubMed Central  Google Scholar 

  37. Kruskal W (1987) Relative importance by averaging over orderings. Am Stat 41:6–10

    Google Scholar 

  38. Grömping U (2007) Estimators of relative importance in linear regression based on variance decomposition. Am Stat 61:139–147

    Google Scholar 

  39. Scheppers E, van Dongen E, Dekker J, Geertzen J, Dekker J (2006) Potential barriers to the use of health services among ethnic minorities: a review. Fam Pract 23:325–348

    PubMed  Google Scholar 

  40. Liang K-Y, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika. 73:13–22

    Google Scholar 

  41. Zeger SL, Liang K-Y (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics. 42:121–130

    CAS  PubMed  Google Scholar 

  42. Warming L, Hassager C, Christiansen C (2002) Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int 13:105–112

    CAS  PubMed  Google Scholar 

  43. Arlot ME, Sornay-Rendu E, Garnero P, Vey-Marty B, Delmas PD (1997) Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J Bone Miner Res 12:683–690

    CAS  PubMed  Google Scholar 

  44. Reeve J, Walton J, Russell LJ, Lunt M, Wolman R, Abraham R, Justice J, Nicholls A, Wardley-Smith B, Green JR, Mitchell A (1999) Determinants of the first decade of bone loss after menopause at spine, hip and radius. QJM 92:261–273

    CAS  PubMed  Google Scholar 

  45. Eriksson J, Evans DS, Nielson CM, Shen J, Srikanth P, Hochberg M, McWeeney S, Cawthon PM, Wilmot B, Zmuda J, Tranah G, Mirel DB, Challa S, Mooney M, Crenshaw A, Karlsson M, Mellström D, Vandenput L, Orwoll E, Ohlsson C (2015) Limited clinical utility of a genetic risk score for the prediction of fracture risk in elderly subjects. J Bone Miner Res 30:184–194

    PubMed  PubMed Central  Google Scholar 

  46. Ho-Le TP, Pham HM, Center JR, Eisman JA, Nguyen HT, Nguyen TV (2018) Prediction of changes in bone mineral density in the elderly: contribution of “osteogenomic profile”. Arch Osteoporos 13:68

    PubMed  Google Scholar 

  47. Luckey MM, Meier DE, Mandeli JP, DaCosta MC, Hubbard ML, Goldsmith SJ (1989) Radial and vertebral bone density in white and black women: evidence for racial differences in premenopausal bone homeostasis. J Clin Endocrinol Metab 69:762–770

    CAS  PubMed  Google Scholar 

  48. Cauley JA, Lui LY, Stone KL, Hillier TA, Zmuda JM, Hochberg M, Beck TJ, Ensrud KE (2005) Longitudinal study of changes in hip bone mineral density in Caucasian and African-American women. J Am Geriatr Soc 53:183–189

    PubMed  Google Scholar 

  49. Chen Z, Qi L, Beck TJ, Robbins J, Wu G, Lewis CE, Cauley JA, Wright NC, Seldin MF (2011) Stronger bone correlates with African admixture in African-American women. J Bone Miner Res 26:2307–2316

    PubMed  Google Scholar 

  50. Finkelstein JS, Brockwell SE, Mehta V, Greendale GA, Sowers MR, Ettinger B, Lo JC, Johnston JM, Cauley JA, Danielson ME, Neer RM (2008) Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J Clin Endocrinol Metab 93:861–868

    CAS  PubMed  Google Scholar 

  51. Luckey MM, Wallenstein S, Lapinski R, Meier DE (1996) A prospective study of bone loss in African-American and white women--a clinical research center study. J Clin Endocrinol Metab 81:2948–2956

    CAS  Google Scholar 

  52. Tracy JK, Meyer WA, Flores RH, Wilson PD, Hochberg MC (2005) Racial differences in rate of decline in bone mass in older men: the Baltimore men's osteoporosis study. J Bone Miner Res 20:1228–1234

    PubMed  Google Scholar 

  53. Heaney RP (2006) Low calcium intake among African Americans: effects on bones and body weight. J Nutr 136:1095–1098

    CAS  PubMed  Google Scholar 

  54. (June 2015) Osteoporosis and African American Women in NIH Osteoporosis and Related Bone Diseases, National Resource Center,

  55. James, G. W., Daniela; Hastie, Trevor; Tibshirani, Robbert (2017) An introduction to statistical learning Springer Science + Business Media New York.

Download references

Funding

The research and analysis described in the current publication was supported by a grant from the National Institute of General Medical Sciences (GR08954), the Genome Acquisition to Analytics (GAA) Research Core of the Personalized Medicine Center of Biomedical Research Excellence in the Nevada Institute of Personalized Medicine, and the National Supercomputing Institute at the University of Nevada Las Vegas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Wu.

Ethics declarations

Conflicts of interest

None.

Disclaimer

The funding sponsor was not involved in the analysis design, genotype imputation, data analysis, and interpretation of the analysis results or the preparation, review, and approval of this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Wu, Q. Association between a literature-based genetic risk score and bone mineral density of African American women in Women Health Initiative Study. Osteoporos Int 31, 913–920 (2020). https://doi.org/10.1007/s00198-019-05244-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-019-05244-8

Keywords

Navigation