Skip to main content
Log in

Defect dynamics in clusters of self-propelled rods in circular confinement

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Rod-shaped active micro/nano-particles, such as bacterial and bipolar metallic micro/nano-motors, demonstrate novel collective phenomena far from the equilibrium state compared to passive particles. We apply a simulation approach --dissipative particle dynamics (DPD)-- to explore the collectively ordered states of self-propelled rods (SPRs). The SPRs are confined in a finite circular zone and repel each other when two rods touch each other. It is found that for a long enough rods system, the global vortex patterns, dynamic pattern oscillation between hedgehog pattern and vortex pattern, and hedgehog patterns are observed successively with increasing active force Fa. For the vortex pattern, the total interaction energy between the rods U is linear with active force Fa, i.e., UFa . While the relation UFa2 is obtained for the hedgehog structure. It is observed that a new hedgehog pattern with one defect core is created by two ejections of polar cluster in opposite directions from the original hedgehog pattern, and then merges into one through the diffusion of the two aggregates, i.e., the creation and annihilation of topological charges.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E.M. Purcell, Am. J. Phys. 45, 3 (1977)

    ADS  Google Scholar 

  2. T. Qiu et al., Nat. Commun. 5, 5119 (2014)

    ADS  Google Scholar 

  3. C. Brennen, H. Winet, Annu. Rev. Fluid Mech. 9, 339 (1977)

    ADS  Google Scholar 

  4. H.A. Stone, A.D.T. Samuel, Phys. Rev. Lett. 77, 4102 (1996)

    ADS  Google Scholar 

  5. D.L. Koch, G. Subramanian, Annu. Rev. Fluid Mech. 43, 637 (2010)

    ADS  Google Scholar 

  6. W.F. Paxton et al., J. Am. Chem. Soc. 128, 14881 (2006)

    Google Scholar 

  7. J. Zhang, B.A. Grzybowski, S. Granick, Langmuir 33, 6964 (2017)

    Google Scholar 

  8. Y. Yoshizumi, H. Suzuki, ACS Appl. Mater. Interfaces 9, 21355 (2017)

    Google Scholar 

  9. A.I. Campbell, S.J. Ebbens, Langmuir 29, 14066 (2013)

    Google Scholar 

  10. W. Ebeling, Physica A 314, 92 (2002)

    ADS  MathSciNet  Google Scholar 

  11. S. Ramachandran, P.B.S. Kumar, I. Pagonabarraga, Eur. Phys. J. E 20, 151 (2006)

    Google Scholar 

  12. B. Ezhilan, M.J. Shelley, D. Saintillan, Phys. Fluids 25, 070607 (2013)

    ADS  Google Scholar 

  13. C.E. Walczak, T.J. Mitchison, A. Desai, Cell 84, 37 (1996)

    Google Scholar 

  14. P.S. Maddox, K.S. Bloom, E.D. Salmon, Nat. Cell Biol. 2, 36 (2000)

    Google Scholar 

  15. M.J. Shelley, Annu. Rev. Fluid Mech. 48, 487 (2016)

    ADS  Google Scholar 

  16. T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)

    ADS  Google Scholar 

  17. M.C. Marchetti et al., Rev. Mod. Phys. 85, 1143 (2013)

    ADS  Google Scholar 

  18. M. Romensky, V. Lobaskin, T. Ihle, Phys. Rev. E 90, 063315 (2014)

    ADS  Google Scholar 

  19. A. Bricard et al., Nature 503, 95 (2013)

    ADS  Google Scholar 

  20. E. Ben-Naim, P.L. Krapivsky, Phys. Rev. E 73, 031109 (2006)

    ADS  MathSciNet  Google Scholar 

  21. I.S. Aranson, L.S. Tsimring, Phys. Rev. E 74, 031915 (2006)

    ADS  MathSciNet  Google Scholar 

  22. D. Grossman, I.S. Aranson, E. Ben Jacob, New J. Phys. 10, 023036 (2008)

    ADS  Google Scholar 

  23. J. Deseigne, O. Dauchot, H. Chate, Phys. Rev. Lett. 105, 098001 (2010)

    ADS  Google Scholar 

  24. C.A. Weber et al., Phys. Rev. Lett. 110, 208001 (2013)

    ADS  Google Scholar 

  25. A. Sokolov et al., Phys. Rev. Lett. 98, 158102 (2007)

    ADS  Google Scholar 

  26. A. Baskaran, M.C. Marchetti, Proc. Natl. Acad. Sci. U.S.A. 106, 15567 (2009)

    ADS  Google Scholar 

  27. F. Peruani, A. Deutsch, M. Bar, Phys. Rev. E 74, 030904 (2006)

    ADS  Google Scholar 

  28. Y.Z. Yang, V. Marceau, G. Gompper, Phys. Rev. E 82, 031904 (2010)

    ADS  Google Scholar 

  29. A. Baskaran, M.C. Marchetti, Phys. Rev. Lett. 101, 268101 (2008)

    ADS  Google Scholar 

  30. F. Peruani et al., Phys. Rev. Lett. 108, 098102 (2012)

    ADS  Google Scholar 

  31. H.H. Wensink et al., Proc. Natl. Acad. Sci. U.S.A. 109, 14308 (2012)

    ADS  Google Scholar 

  32. H.P. Zhang et al., Proc. Natl. Acad. Sci. U.S.A. 107, 13626 (2010)

    ADS  Google Scholar 

  33. J. Dunkel et al., Phys. Rev. Lett. 110, 228102 (2013)

    ADS  Google Scholar 

  34. A. Kudrolli et al., Phys. Rev. Lett. 100, 058001 (2008)

    ADS  Google Scholar 

  35. W.F. Paxton et al., J. Am. Chem. Soc. 126, 13424 (2004)

    Google Scholar 

  36. N. Mano, A. Heller, J. Am. Chem. Soc. 127, 11574 (2005)

    Google Scholar 

  37. Y. Sumino et al., Nature 483, 448 (2012)

    ADS  Google Scholar 

  38. V. Schaller et al., Nature 467, 73 (2010)

    ADS  Google Scholar 

  39. A. Zottl, H. Stark, J. Phys.: Condens. Matter 28, 253001 (2016)

    ADS  Google Scholar 

  40. Z.J. Wang et al., Soft Matter 14, 2906 (2018)

    ADS  Google Scholar 

  41. G.L. Li, J.X. Tang, Phys. Rev. Lett. 103, 078101 (2009)

    ADS  Google Scholar 

  42. C. Abaurrea Velasco et al., Soft Matter 13, 5865 (2017)

    ADS  Google Scholar 

  43. A. Deblais et al., Phys. Rev. Lett. 120, 188002 (2018)

    ADS  Google Scholar 

  44. F.G. Woodhouse, R.E. Goldstein, Phys. Rev. Lett. 109, 168105 (2012)

    ADS  Google Scholar 

  45. A. Bricard et al., Nat. Commun. 6, 7470 (2015)

    ADS  Google Scholar 

  46. H. Wioland et al., Phys. Rev. Lett. 110, 268102 (2013)

    ADS  Google Scholar 

  47. K. Beppu et al., Soft Matter 13, 5038 (2017)

    ADS  Google Scholar 

  48. E. Lushi, H. Wioland, R.E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 111, 9733 (2014)

    ADS  Google Scholar 

  49. A.C.H. Tsang, E. Kanso, Phys. Rev. E 91, 043008 (2015)

    ADS  Google Scholar 

  50. M. Theillard, R. Alonso-Matilla, D. Saintillan, Soft Matter 13, 363 (2017)

    ADS  Google Scholar 

  51. J. Slomka, A. Townsend, J. Dunkel, Phys. Rev. Fluids 3, 103304 (2018)

    ADS  Google Scholar 

  52. M. Ravnik, J.M. Yeomans, Phys. Rev. Lett. 110, 026001 (2013)

    ADS  Google Scholar 

  53. P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19, 155 (1992)

    ADS  Google Scholar 

  54. R.D. Groot, P.B. Warren, J. Chem. Phys. 107, 4423 (1997)

    ADS  Google Scholar 

  55. P. Espanol, P. Warren, Europhys. Lett. 30, 191 (1995)

    ADS  Google Scholar 

  56. F. Lugli, E. Brini, F. Zerbetto, J. Phys. Chem. C 116, 592 (2012)

    Google Scholar 

  57. J.L. Cheng, A. Vishnyakov, A.V. Neimark, J. Chem. Phys. 142, 034705 (2015)

    ADS  Google Scholar 

  58. R.D. Groot, K.L. Rabone, Biophys. J. 81, 725 (2001)

    ADS  Google Scholar 

  59. I. Vattulainen et al., J. Chem. Phys. 116, 3967 (2002)

    ADS  Google Scholar 

  60. S. Xiao et al., Soft Matter 11, 2416 (2015)

    ADS  Google Scholar 

  61. Y.K. Levine et al., J. Chem. Phys. 122, 144902 (2005)

    ADS  Google Scholar 

  62. A. AlSunaidi, W.K. den Otter, J.H.R. Clarke, J. Chem. Phys. 130, 124910 (2009)

    ADS  Google Scholar 

  63. S.H. Chou et al., Soft Matter 7, 9119 (2011)

    ADS  Google Scholar 

  64. H.H. Wensink, H. Lowen, Phys. Rev. E 78, 031409 (2008)

    ADS  Google Scholar 

  65. G.S. Redner, M.F. Hagan, A. Baskaran, Phys. Rev. Lett. 110, 055701 (2013)

    ADS  Google Scholar 

  66. S. Weitz, A. Deutsch, F. Peruani, Phys. Rev. E 92, 012322 (2015)

    ADS  Google Scholar 

  67. X.Q. Shi, Y.Q. Ma, Nat. Commun. 4, 3013 (2013)

    ADS  Google Scholar 

  68. T.Y. Si, Physica A 391, 3054 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Hao.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Si, T., Hao, J. et al. Defect dynamics in clusters of self-propelled rods in circular confinement. Eur. Phys. J. E 42, 150 (2019). https://doi.org/10.1140/epje/i2019-11911-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11911-y

Keywords

Navigation