Skip to main content

Advertisement

Log in

Resolution of Crohn’s disease

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Crohn’s disease (CD) is characterized by chronic inflammation of the gastrointestinal tract and represents one of the main inflammatory bowel disease (IBD) forms. The infiltration of immune cells into the mucosa and uncontrolled production of pro-inflammatory cytokines and other mediators trigger the chronic inflammatory reaction in the intestine [1]. The inflammatory setting consists of subsequent events that comprise an induction phase, the peak of inflammation which is subsequently followed by the resolution phase. The induction phase, which represents the first phase of inflammation, is important for the rapid and efficient activation of the immune system for sufficient host defense. The permanent sensing of exogenous or endogenous danger signals enables the fast initiation of the inflammatory reaction. The immune cell infiltrate initiates an inflammatory cascade where released lipid and protein mediators play an indispensable role [2, 3]. The last decades of research strongly suggest that resolution of inflammation is similarly a tightly coordinated and active process. The basic concept that resolution of inflammation has to be regarded as an active process has been thoroughly described by others [4,5,6]. The following review focuses on mechanisms, pathways, and specific mediators that are actively involved in the resolution of inflammation in CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Strober W, Fuss I, Mannon P (2007) The fundamental basis of inflammatory bowel disease. J Clin Invest 117(3):514–521

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ, Golenbock D, Gresnigt MS, Heneka MT, Hoffman HM, Hotchkiss R, Joosten LAB, Kastner DL, Korte M, Latz E, Libby P, Mandrup-Poulsen T, Mantovani A, Mills KHG, Nowak KL, O'Neill LA, Pickkers P, van der Poll T, Ridker PM, Schalkwijk J, Schwartz DA, Siegmund B, Steer CJ, Tilg H, van der Meer JWM, van de Veerdonk FL, Dinarello CA (2017) A guiding map for inflammation. Nat Immunol 18(8):826–831

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanchez-Munoz F, Dominguez-Lopez A, Yamamoto-Furusho JK (2008) Role of cytokines in inflammatory bowel disease. World J Gastroenterol 14(27):4280–4288

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Alessandri AL, Sousa LP, Lucas CD, Rossi AG, Pinho V, Teixeira MM (2013) Resolution of inflammation: mechanisms and opportunity for drug development. Pharmacol Ther 139(2):189–212

    CAS  PubMed  Google Scholar 

  5. Chiang N, Fierro IM, Gronert K, Serhan CN (2000) Activation of lipoxin A(4) receptors by aspirin-triggered lipoxins and select peptides evokes ligand-specific responses in inflammation. J Exp Med 191(7):1197–1208

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Serhan CN, Chiang N, Dalli J (2015) The resolution code of acute inflammation: novel pro-resolving lipid mediators in resolution. Semin Immunol 27(3):200–215

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaiche J, Almer S, Tysk C, O'Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837):599–603

    CAS  PubMed  Google Scholar 

  8. Neurath MF (2014) Cytokines in inflammatory bowel disease. Nat Rev Immunol 14(5):329–342

    CAS  PubMed  Google Scholar 

  9. Atreya R, Neurath MF (2015) IBD pathogenesis in 2014: molecular pathways controlling barrier function in IBD. Nat Rev Gastroenterol Hepatol 12(2):67–68

    PubMed  Google Scholar 

  10. Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L (2017) Crohn’s disease. Lancet 389(10080):1741–1755

    PubMed  Google Scholar 

  11. Harbord M, Annese V, Vavricka SR, Allez M, Barreiro-de Acosta M, Boberg KM, Burisch J, de Vos M, de Vries AM, Dick AD, Juillerat P, Karlsen TH, Koutroubakis I, Lakatos PL, Orchard T, Papay P, Raine T, Reinshagen M, Thaci D, Tilg H, Carbonnel F, for the European Crohn’s and Colitis Organisation [ECCO] (2016) The first European evidence-based consensus on extra-intestinal manifestations in inflammatory bowel disease. J Crohns Colitis 10(3):239–254

    PubMed  Google Scholar 

  12. Ng SC et al (2018) Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390(10114):2769–2778

    Google Scholar 

  13. Gomollon F et al (2017) 3rd European evidence-based consensus on the diagnosis and management of Crohn's disease 2016: part 1: diagnosis and medical management. J Crohns Colitis 11(1):3–25

    PubMed  Google Scholar 

  14. Klenske E et al (2019) Targeting mucosal healing in Crohn’s disease: what the clinician needs to know. Ther Adv Gastroenterol 12:1756284819856865

    Google Scholar 

  15. Sandborn WJ, Feagan BG, Rutgeerts P, Hanauer S, Colombel JF, Sands BE, Lukas M, Fedorak RN, Lee S, Bressler B, Fox I, Rosario M, Sankoh S, Xu J, Stephens K, Milch C, Parikh A, GEMINI 2 Study Group (2013) Vedolizumab as induction and maintenance therapy for Crohn's disease. N Engl J Med 369(8):711–721

    CAS  PubMed  Google Scholar 

  16. Feagan BG, Sandborn WJ, Gasink C, Jacobstein D, Lang Y, Friedman JR, Blank MA, Johanns J, Gao LL, Miao Y, Adedokun OJ, Sands BE, Hanauer SB, Vermeire S, Targan S, Ghosh S, de Villiers WJ, Colombel JF, Tulassay Z, Seidler U, Salzberg BA, Desreumaux P, Lee SD, Loftus EV Jr, Dieleman LA, Katz S, Rutgeerts P (2016) Ustekinumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med 375(20):1946–1960

    CAS  PubMed  Google Scholar 

  17. Atreya R, Neurath MF (2018) Mechanisms of molecular resistance and predictors of response to biological therapy in inflammatory bowel disease. Lancet Gastroenterol Hepatol 3(11):790–802

    PubMed  Google Scholar 

  18. Kamada N et al (2008) Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J Clin Invest 118(6):2269–2280

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tan ZY, Bealgey KW, Fang Y, Gong YM, Bao S (2009) Interleukin-23: immunological roles and clinical implications. Int J Biochem Cell Biol 41(4):733–735

    CAS  PubMed  Google Scholar 

  20. Neurath MF, Finotto S, Fuss I, Boirivant M, Galle PR, Strober W (2001) Regulation of T cell apoptosis in inflammatory bowel disease: to die or not to die, that is the mucosal question. Trends Immunol 22(1):21–26

    CAS  PubMed  Google Scholar 

  21. Lugering A et al (2001) Infliximab induces apoptosis in monocytes from patients with chronic active Crohn’s disease by using a caspase-dependent pathway. Gastroenterology 121(5):1145–1157

    CAS  PubMed  Google Scholar 

  22. Broker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11(9):3155–3162

    PubMed  Google Scholar 

  23. Nunes T, Bernardazzi C, de Souza HS (2014) Cell death and inflammatory bowel diseases: apoptosis, necrosis, and autophagy in the intestinal epithelium. Biomed Res Int 2014:218493

    PubMed  PubMed Central  Google Scholar 

  24. Rath PC, Aggarwal BB (1999) TNF-induced signaling in apoptosis. J Clin Immunol 19(6):350–364

    CAS  PubMed  Google Scholar 

  25. Adegbola SO, Sahnan K, Warusavitarne J, Hart A, Tozer P (2018) Anti-TNF Therapy in Crohn's Disease. Int J Mol Sci 19(8):2244.

    PubMed Central  Google Scholar 

  26. Danese S (2012) New therapies for inflammatory bowel disease: from the bench to the bedside. Gut 61(6):918–932

    CAS  PubMed  Google Scholar 

  27. Hanauer SB, Sandborn WJ, Rutgeerts P, Fedorak RN, Lukas M, MacIntosh D, Panaccione R, Wolf D, Pollack P (2006) Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology 130(2):323–333 quiz 591

    CAS  PubMed  Google Scholar 

  28. Ben-Horin S, Kopylov U, Chowers Y (2014) Optimizing anti-TNF treatments in inflammatory bowel disease. Autoimmun Rev 13(1):24–30

    CAS  PubMed  Google Scholar 

  29. Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, Rachmilewitz D, Wolf DC, Olson A, Bao W, Rutgeerts P (2002) Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 359(9317):1541–1549

    CAS  PubMed  Google Scholar 

  30. Ben-Horin S, Chowers Y (2014) Tailoring anti-TNF therapy in IBD: drug levels and disease activity. Nat Rev Gastroenterol Hepatol 11(4):243–255

    CAS  PubMed  Google Scholar 

  31. Sandborn WJ, Rutgeerts P, Enns R, Hanauer SB, Colombel JF, Panaccione R, D'Haens G, Li J, Rosenfeld MR, Kent JD, Pollack PF (2007) Adalimumab induction therapy for Crohn disease previously treated with infliximab: a randomized trial. Ann Intern Med 146(12):829–838

    PubMed  Google Scholar 

  32. Steenholdt C, Brynskov J, Thomsen OØ, Munck LK, Fallingborg J, Christensen LA, Pedersen G, Kjeldsen J, Jacobsen BA, Oxholm AS, Kjellberg J, Bendtzen K, Ainsworth MA (2014) Individualised therapy is more cost-effective than dose intensification in patients with Crohn’s disease who lose response to anti-TNF treatment: a randomised, controlled trial. Gut 63(6):919–927

    PubMed  Google Scholar 

  33. Atreya R, Zimmer M, Bartsch B, Waldner MJ, Atreya I, Neumann H, Hildner K, Hoffman A, Kiesslich R, Rink AD, Rau TT, Rose–John S, Kessler H, Schmidt J, Neurath MF (2011) Antibodies against tumor necrosis factor (TNF) induce T cell apoptosis in patients with inflammatory bowel diseases via TNF receptor 2 and intestinal CD14(+) macrophages. Gastroenterology 141(6):2026–2038

    CAS  PubMed  Google Scholar 

  34. Atreya R, Neumann H, Neufert C, Waldner MJ, Billmeier U, Zopf Y, Willma M, App C, Münster T, Kessler H, Maas S, Gebhardt B, Heimke-Brinck R, Reuter E, Dörje F, Rau TT, Uter W, Wang TD, Kiesslich R, Vieth M, Hannappel E, Neurath MF (2014) In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease. Nat Med 20(3):313–318

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Atreya R, Goetz M (2013) Molecular imaging in gastroenterology. Nat Rev Gastroenterol Hepatol 10(12):704–712

    PubMed  Google Scholar 

  36. Leal RF, Planell N, Kajekar R, Lozano JJ, Ordás I, Dotti I, Esteller M, Masamunt MC, Parmar H, Ricart E, Panés J, Salas A (2015) Identification of inflammatory mediators in patients with Crohn’s disease unresponsive to anti-TNFalpha therapy. Gut 64(2):233–242

    CAS  PubMed  Google Scholar 

  37. West NR et al (2017) Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med 23(5):579–589

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gaujoux R, Starosvetsky E, Maimon N, Vallania F, Bar-Yoseph H, Pressman S, Weisshof R, Goren I, Rabinowitz K, Waterman M, Yanai H, Dotan I, Sabo E, Chowers Y, Khatri P, Shen-Orr SS (2019) Cell-centred meta-analysis reveals baseline predictors of anti-TNFalpha non-response in biopsy and blood of patients with IBD. Gut 68(4):604–614

    CAS  PubMed  Google Scholar 

  39. Curotto de Lafaille MA, Lafaille JJ (2009) Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30(5):626–635

    CAS  PubMed  Google Scholar 

  40. Gregori S, Goudy KS, Roncarolo MG (2012) The cellular and molecular mechanisms of immuno-suppression by human type 1 regulatory T cells. Front Immunol 3:30

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mottet C, Uhlig HH, Powrie F (2003) Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J Immunol 170(8):3939–3943

    CAS  PubMed  Google Scholar 

  42. Gagliani N, Vesely MCA, Iseppon A, Brockmann L, Xu H, Palm NW, de Zoete MR, Licona-Limón P, Paiva RS, Ching T, Weaver C, Zi X, Pan X, Fan R, Garmire LX, Cotton MJ, Drier Y, Bernstein B, Geginat J, Stockinger B, Esplugues E, Huber S, Flavell RA (2015) Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523(7559):221–225

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schett G, Neurath MF (2018) Resolution of chronic inflammatory disease: universal and tissue-specific concepts. Nat Commun 9(1):3261

    PubMed  PubMed Central  Google Scholar 

  44. Desreumaux P, Foussat A, Allez M, Beaugerie L, Hébuterne X, Bouhnik Y, Nachury M, Brun V, Bastian H, Belmonte N, Ticchioni M, Duchange A, Morel–Mandrino P, Neveu V, Clerget–Chossat N, Forte M, Colombel J–F (2012) Safety and efficacy of antigen-specific regulatory T cell therapy for patients with refractory Crohn’s disease. Gastroenterology 143(5):1207–1217 e2

    CAS  PubMed  Google Scholar 

  45. Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schäffer AA, Noyan F, Perro M, Diestelhorst J, Allroth A, Murugan D, Hätscher N, Pfeifer D, Sykora KW, Sauer M, Kreipe H, Lacher M, Nustede R, Woellner C, Baumann U, Salzer U, Koletzko S, Shah N, Segal AW, Sauerbrey A, Buderus S, Snapper SB, Grimbacher B, Klein C (2009) Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med 361(21):2033–2045

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Herfarth H, Scholmerich J (2002) IL-10 therapy in Crohn’s disease: at the crossroads. Treatment of Crohn’s disease with the anti-inflammatory cytokine interleukin 10. Gut 50(2):146–147

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Schreiber S, Fedorak RN, Nielsen OH, Wild G, Williams CN, Nikolaus S, Jacyna M, Lashner BA, Gangl A, Rutgeerts P, Isaacs K, van Deventer SJH, Koningsberger JC, Cohard M, LeBeaut A, Hanauer SB (2000) Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s disease IL-10 cooperative study group. Gastroenterology 119(6):1461–1472

    CAS  PubMed  Google Scholar 

  48. Mizoguchi A (2012) Healing of intestinal inflammation by IL-22. Inflamm Bowel Dis 18(9):1777–1784

    PubMed  Google Scholar 

  49. Sabat R, Ouyang W, Wolk K (2014) Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov 13(1):21–38

    CAS  PubMed  Google Scholar 

  50. Chiriac MT, Buchen B, Wandersee A, Hundorfean G, Günther C, Bourjau Y, Doyle SE, Frey B, Ekici AB, Büttner C, Weigmann B, Atreya R, Wirtz S, Becker C, Siebler J, Neurath MF (2017) Activation of epithelial signal transducer and activator of transcription 1 by interleukin 28 controls mucosal healing in mice with colitis and is increased in mucosa of patients with inflammatory bowel disease. Gastroenterology 153(1):123–138 e8

    CAS  PubMed  Google Scholar 

  51. Medina-Contreras O, Harusato A, Nishio H, Flannigan KL, Ngo V, Leoni G, Neumann PA, Geem D, Lili LN, Ramadas RA, Chassaing B, Gewirtz AT, Kohlmeier JE, Parkos CA, Towne JE, Nusrat A, Denning TL (2016) Cutting edge: IL-36 receptor promotes resolution of intestinal damage. J Immunol 196(1):34–38

    CAS  PubMed  Google Scholar 

  52. Bain CC, Mowat AM (2014) Macrophages in intestinal homeostasis and inflammation. Immunol Rev 260(1):102–117

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Steinbach EC, Plevy SE (2014) The role of macrophages and dendritic cells in the initiation of inflammation in IBD. Inflamm Bowel Dis 20(1):166–175

    PubMed  Google Scholar 

  54. Parihar A, Eubank TD, Doseff AI (2010) Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J Innate Immun 2(3):204–215

    PubMed  PubMed Central  Google Scholar 

  55. Lissner D et al (2015) Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflamm Bowel Dis 21(6):1297–1305

    PubMed  Google Scholar 

  56. Zhu W, Yu J, Nie Y, Shi XK, Liu Y, Li F, Zhang XL (2014) Disequilibrium of M1 and M2 macrophages correlates with the development of experimental inflammatory bowel diseases. Immunol Investig 43(7):638–652

    CAS  Google Scholar 

  57. Elliott MR, Ravichandran KS (2016) The dynamics of apoptotic cell clearance. Dev Cell 38(2):147–160

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Elliott MR, Koster KM, Murphy PS (2017) Efferocytosis signaling in the regulation of macrophage inflammatory responses. J Immunol 198(4):1387–1394

    CAS  PubMed  Google Scholar 

  59. Onali S, A Favale, and MC Fantini (2019) The Resolution of Intestinal Inflammation: The Peace-Keeper's Perspective. Cells 8(4):34

    PubMed Central  Google Scholar 

  60. Marks DJ, Harbord MWN, MacAllister R, Rahman FZ, Young J, al-Lazikani B, Lees W, Novelli M, Bloom S, Segal AW (2006) Defective acute inflammation in Crohn’s disease: a clinical investigation. Lancet 367(9511):668–678

    CAS  PubMed  Google Scholar 

  61. Iwakura Y, Ishigame H (2006) The IL-23/IL-17 axis in inflammation. J Clin Invest 116(5):1218–1222

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Geremia A, Arancibia-Cárcamo CV, Fleming MPP, Rust N, Singh B, Mortensen NJ, Travis SPL, Powrie F (2011) IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 208(6):1127–1133

    CAS  PubMed  PubMed Central  Google Scholar 

  63. McGovern D, Powrie F (2007) The IL-23 axis plays a key role in the pathogenesis of IBD. Gut 56(10):1333–1336

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kistner EO, Schumm LP, Lee AT, Gregersen PK, Barmada MM, Rotter JI, Nicolae DL, Cho JH (2006) A genome-wide association study identifies IL-23R as an inflammatory bowel disease gene. Science 314(5804):1461–1463

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ, Powrie F (2010) Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33(2):279–288

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kobayashi T, Okamoto S, Hisamatsu T, Kamada N, Chinen H, Saito R, Kitazume MT, Nakazawa A, Sugita A, Koganei K, Isobe K, Hibi T (2008) IL-23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease. Gut 57(12):1682–1689

    CAS  PubMed  Google Scholar 

  67. Feagan BG, Sandborn WJ, D'Haens G, Panés J, Kaser A, Ferrante M, Louis E, Franchimont D, Dewit O, Seidler U, Kim KJ, Neurath MF, Schreiber S, Scholl P, Pamulapati C, Lalovic B, Visvanathan S, Padula SJ, Herichova I, Soaita A, Hall DB, Böcher WO (2017) Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn’s disease: a randomised, double-blind, placebo-controlled phase 2 study. Lancet 389(10080):1699–1709

    CAS  PubMed  Google Scholar 

  68. Sands BE, Chen J, Feagan BG, Penney M, Rees WA, Danese S, Higgins PDR, Newbold P, Faggioni R, Patra K, Li J, Klekotka P, Morehouse C, Pulkstenis E, Drappa J, van der Merwe R, Gasser RA Jr (2017) Efficacy and safety of MEDI2070, an antibody against interleukin 23, in patients with moderate to severe Crohn’s disease: a phase 2a study. Gastroenterology 153(1):77–86 e6

    CAS  PubMed  Google Scholar 

  69. Schmitt H, Billmeier U, Dieterich W, Rath T, Sonnewald S, Reid S, Hirschmann S, Hildner K, Waldner MJ, Mudter J, Hartmann A, Grützmann R, Neufert C, Münster T, Neurath MF, Atreya R (2019) Expansion of IL-23 receptor bearing TNFR2+ T cells is associated with molecular resistance to anti-TNF therapy in Crohn’s disease. Gut 68(5):814–828

    CAS  PubMed  Google Scholar 

  70. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435

    CAS  PubMed  Google Scholar 

  71. Serhan CN (2017) Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J 31(4):1273–1288

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Fullerton JN, Gilroy DW (2016) Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 15(8):551–567

    CAS  PubMed  Google Scholar 

  73. Headland SE, Norling LV (2015) The resolution of inflammation: principles and challenges. Semin Immunol 27(3):149–160

    CAS  PubMed  Google Scholar 

  74. Gilroy D, De Maeyer R (2015) New insights into the resolution of inflammation. Semin Immunol 27(3):161–168

    CAS  PubMed  Google Scholar 

  75. Buckley CD, Gilroy DW, Serhan CN (2014) Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 40(3):315–327

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Uderhardt S, Herrmann M, Oskolkova OV, Aschermann S, Bicker W, Ipseiz N, Sarter K, Frey B, Rothe T, Voll R, Nimmerjahn F, Bochkov VN, Schett G, Krönke G (2012) 12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Immunity 36(5):834–846

    CAS  PubMed  Google Scholar 

  77. Uderhardt S, Ackermann JA, Fillep T, Hammond VJ, Willeit J, Santer P, Mayr M, Biburger M, Miller M, Zellner KR, Stark K, Zarbock A, Rossaint J, Schubert I, Mielenz D, Dietel B, Raaz-Schrauder D, Ay C, Gremmel T, Thaler J, Heim C, Herrmann M, Collins PW, Schabbauer G, Mackman N, Voehringer D, Nadler JL, Lee JJ, Massberg S, Rauh M, Kiechl S, Schett G, O’Donnell VB, Krönke G (2017) Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease. J Exp Med 214(7):2121–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Masoodi M, Pearl DS, Eiden M, Shute JK, Brown JF, Calder PC, Trebble TM (2013) Altered colonic mucosal polyunsaturated fatty acid (PUFA) derived lipid mediators in ulcerative colitis: new insight into relationship with disease activity and pathophysiology. PLoS One 8(10):e76532

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Pearl DS, Masoodi M, Eiden M, Brümmer J, Gullick D, Mckeever TM, Whittaker MA, Nitch-Smith H, Brown JF, Shute JK, Mills G, Calder PC, Trebble TM (2014) Altered colonic mucosal availability of n-3 and n-6 polyunsaturated fatty acids in ulcerative colitis and the relationship to disease activity. J Crohns Colitis 8(1):70–79

    PubMed  Google Scholar 

  80. Rogler G (2017) Resolution of inflammation in inflammatory bowel disease. Lancet Gastroenterol Hepatol 2(7):521–530

    PubMed  Google Scholar 

  81. Vindigni SM, Zisman TL, Suskind DL, Damman CJ (2016) The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions. Ther Adv Gastroenterol 9(4):606–625

    CAS  Google Scholar 

  82. Carroll IM, Threadgill DW, Threadgill DS (2009) The gastrointestinal microbiome: a malleable, third genome of mammals. Mamm Genome 20(7):395–403

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9(4):279–290

    CAS  PubMed  Google Scholar 

  84. Lane ER, Zisman TL, Suskind DL (2017) The microbiota in inflammatory bowel disease: current and therapeutic insights. J Inflamm Res 10:63–73

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zuo T, Ng SC (2018) The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease. Front Microbiol 9:2247

    PubMed  PubMed Central  Google Scholar 

  86. Sun Y, Li L, Xia Y, Li W, Wang K, Wang L, Miao Y, Ma S (2019) The gut microbiota heterogeneity and assembly changes associated with the IBD. Sci Rep 9(1):440

    PubMed  PubMed Central  Google Scholar 

  87. Manichanh C et al (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55(2):205–211

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sepehri S, Kotlowski R, Bernstein CN, Krause DO (2007) Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease. Inflamm Bowel Dis 13(6):675–683

    PubMed  Google Scholar 

  89. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, van Treuren W, Ren B, Schwager E, Knights D, Song SJ, Yassour M, Morgan XC, Kostic AD, Luo C, González A, McDonald D, Haberman Y, Walters T, Baker S, Rosh J, Stephens M, Heyman M, Markowitz J, Baldassano R, Griffiths A, Sylvester F, Mack D, Kim S, Crandall W, Hyams J, Huttenhower C, Knight R, Xavier RJ (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15(3):382–392

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sartor RB, Wu GD (2017) Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology 152(2):327–339 e4

    CAS  PubMed  Google Scholar 

  91. Ohkusa T, Kato K, Terao S, Chiba T, Mabe K, Murakami K, Mizokami Y, Sugiyama T, Yanaka A, Takeuchi Y, Yamato S, Yokoyama T, Okayasu I, Watanabe S, Tajiri H, Sato N, Japan UC Antibiotic Therapy Study Group (2010) Newly developed antibiotic combination therapy for ulcerative colitis: a double-blind placebo-controlled multicenter trial. Am J Gastroenterol 105(8):1820–1829

    CAS  PubMed  Google Scholar 

  92. Turner D, Levine A, Kolho KL, Shaoul R, Ledder O (2014) Combination of oral antibiotics may be effective in severe pediatric ulcerative colitis: a preliminary report. J Crohns Colitis 8(11):1464–1470

    PubMed  Google Scholar 

  93. Haberman Y, Tickle TL, Dexheimer PJ, Kim MO, Tang D, Karns R, Baldassano RN, Noe JD, Rosh J, Markowitz J, Heyman MB, Griffiths AM, Crandall WV, Mack DR, Baker SS, Huttenhower C, Keljo DJ, Hyams JS, Kugathasan S, Walters TD, Aronow B, Xavier RJ, Gevers D, Denson LA (2014) Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. J Clin Invest 124(8):3617–3633

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, Cohen D, Liguori G, Bourrier A, Nion-Larmurier I, Cosnes J, Seksik P, Langella P, Skurnik D, Richard ML, Beaugerie L (2017) Fungal microbiota dysbiosis in IBD. Gut 66(6):1039–1048

    CAS  PubMed  Google Scholar 

  95. Shaw KA, Bertha M, Hofmekler T, Chopra P, Vatanen T, Srivatsa A, Prince J, Kumar A, Sauer C, Zwick ME, Satten GA, Kostic AD, Mulle JG, Xavier RJ, Kugathasan S (2016) Dysbiosis, inflammation, and response to treatment: a longitudinal study of pediatric subjects with newly diagnosed inflammatory bowel disease. Genome Med 8(1):75

    PubMed  PubMed Central  Google Scholar 

  96. Rajca S et al (2014) Alterations in the intestinal microbiome (dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn’s disease. Inflamm Bowel Dis 20(6):978–986

    PubMed  Google Scholar 

  97. Antoni L et al (2014) Intestinal barrier in inflammatory bowel disease. World J Gastroenterol 20(5):1165–1179

    PubMed  PubMed Central  Google Scholar 

  98. Jager S, Stange EF, Wehkamp J (2013) Inflammatory bowel disease: an impaired barrier disease. Langenbeck's Arch Surg 398(1):1–12

    Google Scholar 

  99. de Souza HS, Fiocchi C (2016) Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol 13(1):13–27

    PubMed  Google Scholar 

  100. Billiet T, Vande Casteele N, van Stappen T, Princen F, Singh S, Gils A, Ferrante M, van Assche G, Cleynen I, Vermeire S (2015) Immunogenicity to infliximab is associated with HLA-DRB1. Gut 64(8):1344–1345

    CAS  PubMed  Google Scholar 

  101. Brand S (2009) Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut 58(8):1152–1167

    CAS  PubMed  Google Scholar 

  102. Franke A et al (2008) Sequence variants in IL-10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet 40(11):1319–1323

    CAS  PubMed  Google Scholar 

  103. Franke A et al (2010) Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 22q13 (IL17REL). Nat Genet 42(4):292–294

    CAS  PubMed  Google Scholar 

  104. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nuñez G, Cho JH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837):603–606

    CAS  PubMed  Google Scholar 

  105. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, de la Vega FM, Briggs J, Günther S, Prescott NJ, Onnie CM, Häsler R, Sipos B, Fölsch UR, Lengauer T, Platzer M, Mathew CG, Krawczak M, Schreiber S (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39(2):207–211

    CAS  PubMed  Google Scholar 

  106. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, Ferguson DJP, Campbell BJ, Jewell D, Simmons A (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 16(1):90–97

    CAS  PubMed  Google Scholar 

  107. Travassos LH, Carneiro LAM, Ramjeet M, Hussey S, Kim YG, Magalhães JG, Yuan L, Soares F, Chea E, le Bourhis L, Boneca IG, Allaoui A, Jones NL, Nuñez G, Girardin SE, Philpott DJ (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11(1):55–62

    CAS  PubMed  Google Scholar 

  108. Lees CW, Barrett JC, Parkes M, Satsangi J (2011) New IBD genetics: common pathways with other diseases. Gut 60(12):1739–1753

    CAS  PubMed  Google Scholar 

  109. Hafner S, Timmer A, Herfarth H, Rogler G, Schölmerich J, Schäffler A, Ehrenstein B, Jilg W, Ott C, Strauch UG, Obermeier F (2008) The role of domestic hygiene in inflammatory bowel diseases: hepatitis A and worm infestations. Eur J Gastroenterol Hepatol 20(6):561–566

    PubMed  Google Scholar 

  110. Ruiz PA, Morón B, Becker HM, Lang S, Atrott K, Spalinger MR, Scharl M, Wojtal KA, Fischbeck-Terhalle A, Frey-Wagner I, Hausmann M, Kraemer T, Rogler G (2017) Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut 66(7):1216–1224

    CAS  PubMed  Google Scholar 

  111. Pineton de Chambrun G et al (2014) Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice. Mucosal Immunol 7(3):589–601

    CAS  PubMed  Google Scholar 

  112. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, Gewirtz AT (2015) Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519(7541):92–96

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

CRC1181 Project C02 (R.A., C.N.) and DFG-SFB/TRR241 Project No. C02 (R.A.) are funded by the German Research Council DFG. The German Research Council DFG funds the Heisenberg Professorship of R.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Atreya.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

This article is a contribution to the special issue on Resolution of Inflammation in Chronic Diseases - Guest Editor: Markus Neurath

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitt, H., Neufert, C., Neurath, M.F. et al. Resolution of Crohn’s disease. Semin Immunopathol 41, 737–746 (2019). https://doi.org/10.1007/s00281-019-00756-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-019-00756-1

Keywords

Navigation