Skip to main content

Advertisement

Log in

The orphan nuclear receptor estrogen-related receptor beta (ERRβ) in triple-negative breast cancer

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Triple-negative breast cancer (TNBC)/basal-like breast cancer (BLBC) is a highly aggressive form of breast cancer. We previously reported that a small molecule agonist ligand for the orphan nuclear receptor estrogen-related receptor beta (ERRβ or ESRRB) has growth inhibitory and anti-mitotic activity in TNBC cell lines. In this study, we evaluate the association of ESRRB mRNA, copy number levels, and protein expression with demographic, clinicopathological, and gene expression features in breast tumor clinical specimens.

Methods

ESRRB mRNA-level expression and clinical associations were analyzed using RNAseq data. Array-based comparative genomic hybridization determined ESRRB copy number in African-American and Caucasian women. Transcription factor activity was measured using promoter–reporter luciferase assays in TNBC cell lines. Semi-automatic quantification of immunohistochemistry measured ERRβ protein expression on a 150-patient tissue microarray series.

Results

ESRRB mRNA expression is significantly lower in TNBC/BLBC versus other breast cancer subtypes. There is no evidence of ESRRB copy number loss. ESRRB mRNA expression is correlated with the expression of genes associated with neuroactive ligand–receptor interaction, metabolic pathways, and deafness. These genes contain G/C-rich transcription factor binding motifs. The ESRRB message is alternatively spliced into three isoforms, which we show have different transcription factor activity in basal-like versus other TNBC cell lines. We further show that the ERRβ2 and ERRβsf isoforms are broadly expressed in breast tumors at the protein level.

Conclusions

Decreased ESRRB mRNA expression and distinct patterns of ERRβ isoform subcellular localization and transcription factor activity are key features in TNBC/BLBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TNBC:

Triple-negative breast cancer

BLBC:

Basal-like breast cancer

AA:

African-American

ESRRB:

Estrogen-related receptor beta

IHC:

Immunohistochemistry

ER:

Estrogen receptor

PR:

Progesterone receptor

HER2:

Human epidermal growth factor two

CW:

Caucasian/White

NR:

Nuclear receptor(s)

ONR:

Orphan nuclear receptor

ERR:

Estrogen-related receptors

OS:

Overall survival

SCAN-B:

Sweden Cancerome Analysis Network-Breast

FPKM:

Fragments per kilobase of transcript per million mapped reads

ESR1:

Estrogen receptor

NHG:

Nottingham grade

NTN:

Non-triple-negative breast cancer

aCGH:

Array comparative genomic hybridization

AFR:

African descent

AMR:

Ad mixed American

DEGs:

Differentially expressed genes

BL2:

Basal-like 2

LAR:

Luminal androgen receptor

ML:

Mesenchymal-like

ERRE:

Estrogen-related response element

SP1:

Specificity-protein-1

TMA:

Tissue microarray

References

  1. American Cancer Society (2017) Breast cancer facts and figures 2017–2018. American Cancer Society I, Atlanta

    Google Scholar 

  2. Anders CK, Abramson V, Tan T, Dent R (2016) The evolution of triple-negative breast cancer: from biology to novel therapeutics. Am Soc Clin Oncol Educ Book 35:34–42

    Article  PubMed  Google Scholar 

  3. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wallden B, Storhoff J, Nielsen T, Dowidar N, Schaper C, Ferree S, Liu S, Leung S, Geiss G, Snider J et al (2015) Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med Genomics 8:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Rakha EA, El-Sayed ME, Green AR, Lee AH, Robertson JF, Ellis IO (2007) Prognostic markers in triple-negative breast cancer. Cancer 109(1):25–32

    Article  PubMed  CAS  Google Scholar 

  6. Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W et al (2018) Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 5(2):77–106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Scott LC, Mobley LR, Kuo TM, Il’yasova D (2019) Update on triple-negative breast cancer disparities for the United States: a population-based study from the United States Cancer Statistics database, 2010 through 2014. Cancer. https://doi.org/10.1002/cncr.32207

    Article  PubMed  PubMed Central  Google Scholar 

  8. Costa RLB, Gradishar WJ (2017) Triple-negative breast cancer: current practice and future directions. J Oncol Pract 13(5):301–303

    Article  PubMed  Google Scholar 

  9. Mullican SE, Dispirito JR, Lazar MA (2013) The orphan nuclear receptors at their 25-year reunion. J Mol Endocrinol 51(3):T115–T140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Giguère V, Yang N, Segui P, Evans RM (1988) Identification of a new class of steroid hormone receptors. Nature 331(6151):91–94

    Article  PubMed  Google Scholar 

  11. Heckler MM, Zeleke TZ, Divekar SD, Fernandez AI, Tiek DM, Woodrick J, Farzanegan A, Roy R, Üren A, Mueller SC et al (2016) Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget 7(30):47201–47220

    Article  PubMed  PubMed Central  Google Scholar 

  12. Long MD, Campbell MJ (2015) Pan-cancer analyses of the nuclear receptor superfamily. Nucl Recept Res. https://doi.org/10.11131/2015/101182

    Article  Google Scholar 

  13. Garattini E, Bolis M, Gianni’ M, Paroni G, Fratelli M, Terao M (2016) Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer. Oncotarget 7(27):42661–42682

    Article  PubMed  PubMed Central  Google Scholar 

  14. Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 123(3):725–731

    Article  PubMed  CAS  Google Scholar 

  15. Saal LH, Vallon-Christersson J, Häkkinen J, Hegardt C, Grabau D, Winter C, Brueffer C, Tang MH, Reuterswärd C, Schulz R et al (2015) The Sweden Cancerome Analysis Network-Breast (SCAN-B) Initiative: a large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the clinical routine. Genome Med 7(1):20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Brueffer C, Vallon-Christersson J, Grabau D, Ehinger A, Häkkinen J, Hegardt C, Malina J, Chen Y, Bendahl P-O, Manjer J et al (2018) Clinical value of RNA sequencing-based classifiers for prediction of the five conventional breast cancer biomarkers: a report from the population-based multicenter Sweden Cancerome Analysis Network-Breast Initiative. JCO Precis Oncol 2:18

    Google Scholar 

  17. Network CGA (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  CAS  Google Scholar 

  18. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47(D1):D590–D595

    Article  PubMed  CAS  Google Scholar 

  19. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28(1):27–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chen X, Li J, Gray WH, Lehmann BD, Bauer JA, Shyr Y, Pietenpol JA (2012) TNBCtype: a subtyping tool for triple-negative breast cancer. Cancer Inform. https://doi.org/10.4137/CIN.S9983

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig 121(7):2750–2767

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Bailey TL (2011) DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27(12):1653–1659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS (2007) Quantifying similarity between motifs. Genome Biol 8(2):R24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A, Chèneby J, Kulkarni SR, Tan G et al (2018) JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res 46(D1):D260–D266

    Article  PubMed  CAS  Google Scholar 

  25. Sugita B, Gill M, Mahajan A, Duttargi A, Kirolikar S, Almeida R, Regis K, Oluwasanmi OL, Marchi F, Marian C et al (2016) Differentially expressed miRNAs in triple negative breast cancer between African-American and non-Hispanic white women. Oncotarget 7(48):79274–79291

    Article  PubMed  PubMed Central  Google Scholar 

  26. Heckler MM, Riggins RB (2015) ERRβ splice variants differentially regulate cell cycle progression. Cell Cycle 14(1):31–45

    Article  PubMed  Google Scholar 

  27. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tesarova P (2012) Breast cancer in the elderly—should it be treated differently? Rep Pract Oncol Radiother 18(1):26–33

    Article  PubMed  PubMed Central  Google Scholar 

  29. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR et al (2015) A global reference for human genetic variation. Nature 526(7571):68–74

    Article  PubMed  CAS  Google Scholar 

  30. Collin RW, Kalay E, Tariq M, Peters T, van der Zwaag B, Venselaar H, Oostrik J, Lee K, Ahmed ZM, Caylan R et al (2008) Mutations of ESRRB encoding estrogen-related receptor beta cause autosomal-recessive nonsyndromic hearing impairment DFNB35. Am J Hum Genet 82(1):125–138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ben Saïd M, Ayedi L, Mnejja M, Hakim B, Khalfallah A, Charfeddine I, Khifagi C, Turki K, Ayadi H, Benzina Z et al (2011) A novel missense mutation in the ESRRB gene causes DFNB35 hearing loss in a Tunisian family. Eur J Med Genet 54(6):e535–e541

    Article  PubMed  Google Scholar 

  32. Chen F, Zhang Q, McDonald T, Davidoff MJ, Bailey W, Bai C, Liu Q, Caskey CT (1999) Identification of two hERR2-related novel nuclear receptors utilizing bioinformatics and inverse PCR. Gene 228(1–2):101–109

    Article  PubMed  CAS  Google Scholar 

  33. Zhou W, Liu Z, Wu J, Liu JH, Hyder SM, Antoniou E, Lubahn DB (2006) Identification and characterization of two novel splicing isoforms of human estrogen-related receptor beta. J Clin Endocrinol Metab 91(2):569–579

    Article  PubMed  CAS  Google Scholar 

  34. Roy B, Haupt LM, Griffiths LR (2013) Review: alternative splicing (AS) of genes as an approach for generating protein complexity. Curr Genomics 14(3):182–194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Divekar SD, Tiek DM, Fernandez A, Riggins RB (2016) Estrogen-related receptor β (ERRβ)—renaissance receptor or receptor renaissance? Nucl Recept Signal 14:e002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, Moses HL, Sanders ME, Pietenpol JA (2016) Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS ONE 11(6):e0157368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sem DS, Casimiro DR, Kliewer SA, Provencal J, Evans RM, Wright PE (1997) NMR spectroscopic studies of the DNA-binding domain of the monomer-binding nuclear orphan receptor, human estrogen related receptor-2 the carboxyl-terminal extension to the zinc-finger region is unstructured in the free form of the protein. J Biol Chem 272(29):18038–18043

    Article  PubMed  CAS  Google Scholar 

  38. Gearhart MD, Holmbeck SM, Evans RM, Dyson HJ, Wright PE (2003) Monomeric complex of human orphan estrogen related receptor-2 with DNA: a pseudo-dimer interface mediates extended half-site recognition. J Mol Biol 327(4):819–832

    Article  PubMed  CAS  Google Scholar 

  39. Castet A, Herledan A, Bonnet S, Jalaguier S, Vanacker J-M, Cavaillès V (2006) Receptor-interacting protein 140 differentially regulates estrogen receptor-related receptor transactivation depending on target genes. Mol Endocrinol 20(5):1035–1047

    Article  PubMed  CAS  Google Scholar 

  40. Data NRCUPoDCoRaE: improving racial and ethnic data on health: report of a workshop (2003). In: Melnick D, Perrin E (eds) Improving racial and ethnic data on health. National Academies Press, Washington, DC

  41. Donna DY, Forman BM (2005) Identification of an agonist ligand for estrogen-related receptors ERRβ/γ. Bioorg Med Chem Lett 15(5):1311–1313

    Article  CAS  Google Scholar 

  42. Ajay SS, Parker SC, Abaan HO, Fajardo KV, Margulies EH (2011) Accurate and comprehensive sequencing of personal genomes. Genome Res 21(9):1498–1505

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mirebrahim H, Close TJ, Lonardi S (2015) De novo meta-assembly of ultra-deep sequencing data. Bioinformatics 31(12):i9–i16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Allison Fitzgerald, Dr. Hillary Stires, Ayodeji Olukoya, and Sonali Persaud for their insights and/or critical reading of the manuscript. We would like to thank Drs. Bassem Haddad, Filipa Lynce, and Michael Johnson for their guidance in developing the HTSR’s invasive ductal carcinoma breast cancer tissue microarray series. We thank Henry Cho and Gaelle Palmer for their contributions to the TMA-associated REDCap database. Thank you to the Survey, Recruitment, and Biospecimen collection Shared Resource (SRBSR) for their support of research recruitment at MedStar Georgetown University Hospital. Thank you to Dr. Lao Saal of Lund University, Sweden for kindly providing the clinical information of SCAN-B data. We thank Garrett Graham for his guidance on all computational studies and Dr. Max Kushner for his aid with the DREME analysis. The results shown here are based in part upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga.

Funding

These studies were supported in part by Department of Defense Breast Cancer Research Program Award W81XWH-17-1-0615 to RBR. Georgetown University Medical Center Shared Resources are supported in part by P30 CA051008 (Lombardi Comprehensive Cancer Center Support Grant; Principal Investigator Dr. Louis Weiner). Fellowship funding for AIF was provided by the LCCC’s Graduate Training in Breast Cancer Health Disparities Research Grant from Susan G. Komen for the Cure (GTDR15330383; Principal Investigator Lucile L. Adams-Campbell).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aileen I. Fernandez or Rebecca B. Riggins.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2019_5485_MOESM1_ESM.pdf

Supplementary material 1 (PDF 4240 kb) Supplemental Fig. 1. Age at diagnosis and association of ESRRB with OS in SCAN-B and TCGA datasets. a, b Average age of patients in SCAN-B dataset by Pam50 (a) and IHC (b) subtypes. ANOVA with multiple comparisons ***p < 0.001, ****p < 0.0001. ch KM plots showing overall survival of all breast cancer patients (c, f), BLBC patients (d, g), and TNBC patients (e, h) in SCAN-B (ce) and TCGA (fh) data Supplemental Fig. 2. Demographics of aCGH cohort. ae Distribution of a age, b tumor size and ESRRB copy number, c pathology, d lymph node status and e metastasis Supplemental Fig. 3. Overlap of BLBC patients and TNBC patients. a, b Heat map representing differential expression of overlapping genes in SCAN-B versus TCGA datasets. c, d Venn diagram of patients in SCAN-B (c) and TCGA (d) data. e List of overrepresented motifs in promoter region of DEGs in SCAN-B datasets Supplemental Fig. 4. Protein and mRNA levels of ERRβ/ESRRB. Densitometry quantifying ERRβ splice variants ERRβ2 (a) and ERRβsf (b) protein levels in cell lines. cESRRB mRNA levels in SCAN-B patients, sorted into TNBC subtypes. d, eESRRB mRNA levels in cell lines representing the TNBC cell lines Supplemental Fig. 5. IHC optimization and localization. a Negative and positive controls used for antibody optimization of ERRβsf ERRβ2. Scale bar = 100 μm. b High magnification view representing subcellular staining of tumor cores staining for ERRβsf or ERRβ2. Selected panels for ERRβsf from tumor cores identified by Vectra3 as > 90% nuclear and cytoplasmic staining, or > 90% cytoplasmic staining. Arrows in left panels show positive nuclei Supplemental Table 1. DEGs in ESRRB high and low patients. List of DEGs found in BLBC and TNBC patients from SCAN-B and TCGA datasets Supplemental Table 2. ERRβ isoform expression and subcellular localization. Mean (sd) and median (IQR) expression of ERRβ2 receptor, ERRβsf receptor, and total ERRβ2:total ERRβsf expression (S2.1) and nuclear/cytoplasmic localization of ERRβ2 receptor and ERRβsf (S2.2) in three IHC breast cancer subtypes Supplemental Table 3. ERRβ isoform expression and clinical features. Analysis of ERRβ2 and ERRβsf receptor expression in the IHC subtypes and lymph node status, race, and age, with and without interaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, A.I., Geng, X., Chaldekas, K. et al. The orphan nuclear receptor estrogen-related receptor beta (ERRβ) in triple-negative breast cancer. Breast Cancer Res Treat 179, 585–604 (2020). https://doi.org/10.1007/s10549-019-05485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-019-05485-5

Keywords

Navigation