Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 17, 2019

Sonographic visibility of cannulas using convex ultrasound transducers

  • Stephen Rumble , Georg Schmitz and Stefanie Dencks EMAIL logo

Abstract

The key for safe ultrasound (US)-guided punctures is a good visibility of the cannula. When using convex transducers for deep punctures, the incident angle between US beam and cannula varies along the cannula leading to a complex visibility pattern. Here, we present a method to systematically investigate the visibility throughout the US image. For this, different objective criteria were defined and applied to measurement series with varying puncture angles and depths of the cannula. It is shown that the visibility not only depends on the puncture angle but also on the location of the cannula in the US image when using convex transducers. In some image regions, an unexpected good visibility was observed even for steep puncture angles. The systematic evaluation of the cannula visibility is of fundamental interest to sensitise physicians to the handling of convex transducers and to evaluate new techniques for further improvement.

Acknowledgements

We acknowledge the contribution of our medical partner Dr. Tim Mäcken (Bergmannsheil – University Hospital Bochum, Germany) who advised us on this topic by sharing his observations. We further acknowledge the support by Thomas Lüppertz (BK Ultrasound, Denmark), who provided the Flex Focus 800 Ultrasound system and the transducer.

  1. Author Statement

  2. Research funding: Authors state no funding involved.

  3. Conflict of interest: Authors state no conflict of interest.

  4. Informed consent: Informed consent is not applicable.

  5. Ethical approval: The conducted research is not related to either human or animal use.

References

[1] Brookes J, Sondekoppam R, Armstrong K, Uppal V, Dhir S, Terlecki M, et al. Comparative evaluation of the visibility and block characteristics of a stimulating needle and catheter vs an echogenic needle and catheter for sciatic nerve block with a low-frequency ultrasound probe. Br J Anaesth 2015;115:912–9.10.1093/bja/aev351Search in Google Scholar PubMed

[2] Brodsky JB, Mariano ER. Regional anaesthesia in the obese patient: lost landmarks and evolving ultrasound guidance. Best Pract Res Clin Anaesthesiol 2011;25:61–72.10.1016/j.bpa.2010.12.005Search in Google Scholar PubMed

[3] Sites BD, Chan VW, Neal JM, Weller R, Grau T, Koscielniak-Nielsen ZJ. The American Society of Regional Anesthesia and Pain Medicine and the European Society of Regional Anaesthesia and Pain Therapy Joint Committee recommendations for education and training in ultrasound-guided regional anesthesia. Reg Anesth Pain Med 2009;34:40–6.10.1097/AAP.0b013e3181926779Search in Google Scholar PubMed

[4] Sites BD, Brull R, Chan VW, Spence BC, Gallagher J, Beach ML. Artifacts and pitfall errors associated with ultrasound-guided regional anesthesia. Part I: understanding the basic principles of ultrasound physics and machine operations. Reg Anesth Pain Med 2007;32:412–8.10.1097/00115550-200709000-00010Search in Google Scholar PubMed

[5] Reusz G, Sarkany P, Gal J, Csomos A. Needle-related ultrasound artifacts and their importance in anaesthetic practice. Br J Anaesth 2014;112:794–802.10.1093/bja/aet585Search in Google Scholar PubMed

[6] Mariano ER, Marshall ZJ, Urman RD, Kaye AD. Ultrasound and its evolution in perioperative regional anesthesia and analgesia. Best Pract Res Clin Anaesthesiol 2014;28:29–39.10.1016/j.bpa.2013.11.001Search in Google Scholar PubMed

[7] Hopkins RE, Bradley M. In-vitro visualization of biopsy needles with ultrasound: a comparative study of standard and echogenic needles using an ultrasound phantom. Clin Radiol 2001;56:499–502.10.1053/crad.2000.0707Search in Google Scholar PubMed

[8] Schafhalter-Zoppoth I, McCulloch C, Gray A. Ultrasound visibility of needles used for regional nerve block: an in vitro study. Reg Anesth Pain Med 2004;29:480–8.10.1097/00115550-200409000-00014Search in Google Scholar

[9] de Korte C, Weijers G, Vriezema D, Keereweer A, Thijssen J, Hansen H. Quantitative analysis of coated needles for ultrasound guided intervention. Orlando, USA: IEEE Int Ultrason Symp (IUS); 2011, pp. 1571–4. DOI: 10.1109/ULTSYM.2011.0390.10.1109/ULTSYM.2011.0390Search in Google Scholar

[10] Deam RK, Kluger R, Barrington MJ, McCutcheon CA. Investigation of a new echogenic needle for use with ultrasound peripheral nerve blocks. Anaesth Intens Care 2007;35:582–6.10.1177/0310057X0703500419Search in Google Scholar PubMed

[11] Maecken T, Zenz M, Grau T. Ultrasound characteristics of needles for regional anesthesia. Reg Anesth Pain Med 2007;32:440–7.10.1097/00115550-200709000-00013Search in Google Scholar PubMed

[12] Nakagawa K, Kamiya T, Arakawa K, Akiyama S, Sakai K.Objective and subjective comparison of the visibility of three echogenic needles and a nonechogenic needle on older ultrasound devices. Acta Anaesthesiol Taiwan 2015;53: 1–6.10.1016/j.aat.2014.11.004Search in Google Scholar

[13] Culp WC, McCowan TC, Goertzen TC, Habbe TG, Hummel MM, LeVeen RF, et al. Relative ultrasonographic echogenicity of standard, dimpled, and polymeric-coated needles. J Vasc Interv Radiol 2000;11:351–8.10.1016/S1051-0443(07)61429-8Search in Google Scholar PubMed

[14] Sviggum HP, Ahn K, Dilger JA, Smith HM. Needle echogenicity in sonographically guided regional anesthesia. J Ultrasound Med 2013;32:143–8.10.7863/jum.2013.32.1.143Search in Google Scholar PubMed

[15] Bergin D, Pappas JN, Hwang JJ, Shearfor DH, Paulson EK. Echogenic polymer coating: does it improve needle visualization in sonographically guided biopsy? Am J Roentgenol 2002;178:1188–90.10.2214/ajr.178.5.1781188Search in Google Scholar PubMed

[16] Jandzinski DI, Carson N, Davis D, Rubens DJ, Voci SL, Gottlieb RH. Treated needles do they facilitate sonographically guided biopsies? J Ultrasound Med 2003;22:1233–7.10.7863/jum.2003.22.11.1233Search in Google Scholar PubMed

[17] Nichols K, Wright LB, Spencer T, Culp WC. Changes in ultrasonographic echogenicity and visibility of needles with changes in angles of insonation. J Vasc Intervent Radiol 2003;14:1553–7.10.1097/01.RVI.0000099527.29957.A6Search in Google Scholar

[18] Hebard S, Hocking G. Echogenic technology can improve needle visibility during ultrasound-guided regional anesthesia. Reg Anesth Pain Med 2011;36:185–9.10.1097/AAP.0b013e31820d4349Search in Google Scholar PubMed

[19] Bradley MJ. An in-vitro study to understand successful free-hand ultrasound guided intervention. Clin Radiol 2001;56:495–8.10.1053/crad.2000.0579Search in Google Scholar PubMed

[20] Nischwitz A, Fischer M, Haberäcker P. Computergrafik und Bildverarbeitung. Wiesbaden: Vieweg; 2007.Search in Google Scholar

[21] Schwemmer U, Markus CK, Brederlau J, Schuster F, Redel A, Roewer N. Einsatz von Ultraschall zur Durchführung peripherer Nervenblockaden. Ultraschall Med 2009;30:6–24.10.1055/s-0028-1109117Search in Google Scholar PubMed

[22] Chin K, Perlas A, Chan V, Brull R. Needle visualization in ultrasound-guided regional anesthesia: challenges and solutions. Reg Anesth Pain Med 2008;33:532–44.10.1097/00115550-200811000-00005Search in Google Scholar PubMed

[23] Dencks S, Schmitz G. Assessment of the potential of beamforming for needle enhancement in punctures. Taipei, Taiwan: IEEE Int Ultrason Sympos (IUS) 2015, pp. 1–4. DOI: 10.1109/ULTSYM.2015.0301.10.1109/ULTSYM.2015.0301Search in Google Scholar

[24] Ting PH, Antonakakis JG. Evidence-based review of ultrasound imaging for regional anesthesia. Semin Anesth Perioper Med Pain 2007;26:218–28.10.1053/j.sane.2007.08.003Search in Google Scholar

[25] Mariano ER, Brodsky JB. Comparison of procedural times for ultrasound-guided perineural catheter insertion in obese and nonobese patients. J Ultrasound Med 2011;30: 1357–61.10.7863/jum.2011.30.10.1357Search in Google Scholar PubMed

[26] Tavakoli SM, Keller EJC, Nassiri D, Joseph AE. A novel polymeric coating for enhanced ultrasound imaging of medical devices. Dallas, Texas: Antec; 2001. ISBN 9781587160981.Search in Google Scholar

[27] Violante MR, Whitbourne RJ, Lanzafame JF, Lydon M. Echogenic coatings. I. STS Biopolymers, Henrietta, NY, 6,106,473; 2000.Search in Google Scholar

[28] Gottlieb RH, Robinette W, Rubens D, Hartley D, Fultz P, Violante M. Coating agent permits improved visualization of biopsy needles during sonography. Am J Roentgenol 1998;171:1301–02.10.2214/ajr.171.5.9798867Search in Google Scholar PubMed

[29] Munirama S, Joy J, Columb M, Habershaw R, Eisma R, Corner G, et al. A randomised, single-blind technical study comparing the ultrasonic visibility of smooth-surfaced and textured needles in a soft embalmed cadaver model. Anaesthesia 2015;70: 537–42.10.1111/anae.12925Search in Google Scholar PubMed

[30] Hocking G, Mitchell CH. Optimizing the safety and practice of ultrasound-guided regional anesthesia: the role of echogenic technology. Curr Opin Anaesthesiol 2012;25:603–9.10.1097/ACO.0b013e328356b835Search in Google Scholar PubMed

[31] Feld R, Needleman L, Goldberg BB. Use of a needle-vibrating device and color doppler imaging for sonographically guided invasive procedures. Am J Roentgenol 1997;168:255–6.10.2214/ajr.168.1.8976955Search in Google Scholar PubMed

[32] Beigi P, Rohling R, Salcudean T, Lessoway VA, Ng GC. Needle trajectory and tip localization in real-time 3-D ultrasound using a moving stylus. Ultrasound Med Biol 2015;41: 2057–70.10.1016/j.ultrasmedbio.2015.03.013Search in Google Scholar PubMed

[33] Harmat A, Rohling RN, Salcudean SE. Needle tip localization using stylet vibration. Ultrasound Med Biol 2006;32: 1339–48.10.1016/j.ultrasmedbio.2006.05.019Search in Google Scholar PubMed

[34] Shubert J, Bell MA. Photoacoustic based visual servoing of needle tips to improve biopsy on obese patients. Washington, DC, USA: IEEE Int Ultrason Sympos; 2017. DOI: 10.1109/ULTSYM.2017.809181510.1109/ULTSYM.2017.8091815Search in Google Scholar

[35] Draper KJ, Blake CC, Gowman L, Downey DB, Fenster A. An algorithm for automatic needle localization in ultrasound-guided breast biopsies. Med Phys 2000;27:1971–9.10.1118/1.1287437Search in Google Scholar PubMed

[36] Uhercik M, Kybic J, Liebgott H, Cachard C. Model fitting using RANSAC for surgical tool localization in 3-D ultrasound images. IEEE Trans Biomed Eng 2010;57:1907–16.10.1109/TBME.2010.2046416Search in Google Scholar PubMed

[37] Zhao Y, Cachard C, Liebgott H. A new automatically biopsy needle tracking method using 3D ultrasound. Prague, Czech Republic: IEEE Int Ultrason Sympos; 2013. DOI: 10.1109/ULTSYM.2013.0217.10.1109/ULTSYM.2013.0217Search in Google Scholar

[38] Zhuang B, Dickie K, Pelissier L. In vivo needle visualization in ultrasound images using tensor-based filtering. Prague, Czech Republic: IEEE Int Ultrason Sympos; 2013. DOI: 10.1109/ULTSYM.2013.017210.1109/ULTSYM.2013.0172Search in Google Scholar

[39] Lin Y, Halmann M, Lin F, Guo J. Method, apparatus and system for enhancing needle visualization in medical ultrasound imaging. Google Patents 2013.Search in Google Scholar

[40] Ding M, Cardinal HN, Fenster A. Automatic needle segmentation in three-dimensional ultrasound images using two orthogonal two-dimensional image projections. Med Phys 2003;30:222–34.10.1118/1.1538231Search in Google Scholar PubMed

[41] Hamper UM, Savader BL, Sheth S. Improved needle-tip visualization by color doppler sonography. Am J Roentgenol 1991;156:401–2.10.2214/ajr.156.2.1898823Search in Google Scholar PubMed

[42] Greppi B, Cerofolini M. Method and apparatus for ultrasound imaging of a biopsy needle or the like during an ultrasound imaging examination. Google Patents 2005.10.1121/1.2185076Search in Google Scholar

[43] Baker JA, Soo MS, Mengoni P. Sonographically guided percutaneous interventions of the breast using a steerable ultrasound beam. Am J Roentgenol 1999;172:157–9.10.2214/ajr.172.1.9888759Search in Google Scholar PubMed

[44] Mesurolle B, Bining HJ, El Khoury M, Barhdadi A, Kao E. Contribution of tissue harmonic imaging and frequency compound imaging in interventional breast sonography. J Ultrasound Med 2006;25:845–55.10.7863/jum.2006.25.7.845Search in Google Scholar PubMed

[45] Su J, Karpiouk A, Wang B, Emelianov S. Photoacoustic imaging of clinical metal needles in tissue. J Biomed Optics 2010;15:021309-6.10.1117/1.3368686Search in Google Scholar PubMed PubMed Central

[46] Rotemberg V, Palmeri M, Rosenzweig S, Grant S, Macleod D, Nightingale K. Acoustic radiation force impulse (ARFI) imaging-based needle visualization. Ultrason Imaging 2011;33:1–16.10.1177/016173461103300101Search in Google Scholar PubMed PubMed Central

[47] Daoud M, Abolmaesumi P, You W, Salcudean SE, Rohling RN. Signature-based algorithm for improved needle localization in ultrasound images: a feasibility study. Orlando, FL, USA: IEEE Int Ultrason Sympos; 2011. DOI: 10.1109/ULTSYM.2011.039110.1109/ULTSYM.2011.0391Search in Google Scholar

[48] Zhuang B, Dickie K, Pelissier L. Adaptive spatial compounding for needle visualization. Orlando, FL, USA: IEEE Int Ultrason Sympos (IUS); 2011. DOI: 201110.1109/ULTSYM.2011.6293650.201110.1109/ULTSYM.2011.6293650Search in Google Scholar

Received: 2018-09-03
Accepted: 2019-01-30
Published Online: 2019-09-17
Published in Print: 2019-12-18

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/bmt-2018-0174/html
Scroll to top button