Skip to main content
Log in

Limit to steady-state aerobic power of skeletal muscles

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Like any other kind of cell, muscle cells produce energy by oxidizing the fuel substrate that they absorb together with the needed oxygen from the surroundings. Oxidation occurs entirely within the cell. It means that the reactants and products of reaction must at some time be dissolved in the cell’s cytosol. If a cell operates at steady state, its cytosol composition remains constant. Therefore, the cytosol in a muscle that produces work at steady state must contain a constant amount of fuel, oxygen, and product of reaction dissolved in it. The greater the power produced, the higher the concentration of these solutes. There is a limit, however, to the maximum amount of solutes that the cytosol can contain without damaging the cell. General thermodynamic arguments, which are reviewed in this paper, help relate this limit to the dehydration and overhydration limits of the cell. The present analysis shows that the same limits entail a limit to the maximum power that a muscle can produce at steady state. This limit depends on the composition of the fuel mixture used by the muscle. The analysis also determines the number of fuel carbon atoms that must be oxidized in parallel within a cell to produce a given power. It may well happen that a muscle cannot reach the maximum attainable power because it cannot activate all the parallel oxidation paths that are needed to produce it. This may be due to a series of reasons ranging from health issues to a lack of training. The paper shows how the methods of indirect calorimetry can provide all the experimental data needed to determine the actual number of parallel oxidation paths that at steady state must be active in a muscle in a given exercise. A diagram relating muscle power to the number of parallel oxidation paths and fuel composition is finally presented. It provides a means to assess the power capacity of animal muscles and can be applied to evaluate their fitness, stamina, margins for improvement, and athletic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Paglietti, A.: Thermodynamic Limit to the Existence of Inanimate and Living Systems. Sepco-Acerten, Milan (2014)

    Google Scholar 

  2. Paglietti, A.: Limits to anaerobic energy and cytosolic concentration in the living cell. Phys. Rev. E 92, 052512.1–052712.9 (2015)

    Article  ADS  Google Scholar 

  3. Smith, N.P., Barclay, C.J., Loiselle, D.S.: The efficiency of muscle contraction. Prog. Biophys. Mol. Biol. 88, 1–58 (2005)

    Article  Google Scholar 

  4. Barclay, C.J.: The basis of differences in thermodynamic efficiency among skeletal muscles. Clin. Exp. Pharmacol. Physiol. 44, 1279–1286 (2017)

    Article  Google Scholar 

  5. Lichtwark, G.A., Barclay, C.J.: The influence of tendon compliance on muscle power output and efficiency during cyclic contractions. J. Exp. Biol. 213, 707–714 (2010)

    Article  Google Scholar 

  6. Jubrias, S.A., Vollestad, N.K., Gronka, R.K., Kushmerick, M.J.: Contraction coupling efficiency of human first dorsal interosseous muscle. J. Physiol. 586, 1993–2002 (2008)

    Article  Google Scholar 

  7. Nelson, F.E., Ortega, J.D., Jubrias, S.A., Conley, K.E., Kushmerick, M.J.: High efficiency in human muscle: an anomaly and an opportunity? J. Exp. Biol. 214, 2649–2653 (2011)

    Article  Google Scholar 

  8. He, Z.-H., Bottinelli, R., Pellegrino, M.A., Ferenczi, M.A., Reggiani, C.: ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition. Biophys. J. 79, 945–961 (2000)

    Article  Google Scholar 

  9. Morris, C.R., Nelson, F.E., Askew, G.N.: The metabolic power requirements of flight and estimations of flight muscle efficiency in the cockatiel (Nymphicus hollandicus). J. Exp. Biol. 213(16), 2788–2796 (2010)

    Article  Google Scholar 

  10. Coyle, E.F., Sidossis, L.S., Horowitz, J.F., Beltz, J.D.: Cycling efficiency is related to percentage of type I muscle fibers. Med. Sci. Sports Exerc. 24(7), 782–788 (1992)

    Article  Google Scholar 

  11. Powers, S.K., Beadle, R.E., Mangum, M.: Exercise efficiency during arm ergometry: effects of speed and work rate. J. Appl. Physiol. 56, 495–499 (1984)

    Article  Google Scholar 

  12. Holt, N.C., Askew, G.N.: The effects of asymmetric length trajectories on the initial mechanical efficiency of mouse soleus muscles. J. Exp. Biol. 215, 324–330 (2012)

    Article  Google Scholar 

  13. Barclay, C.J.: Energetics of contraction. Compr. Physiol. 5, 961–995 (2015)

    Article  Google Scholar 

  14. Atkins, P., De Paula, J.: Physical Chemistry, 10th edn. Oxford University Press, Oxford (2014)

    Google Scholar 

  15. Silbey, R.J., Alberty, R.A., Bawendi, M.G.: Physical Chemistry, 4th edn. Wiley, Hoboken (2005)

    Google Scholar 

  16. Nelson, D.L., Kox, M.M.: Lehninger Principles of Biochemistry, 6th edn. Freeman, New York (2013)

    Google Scholar 

  17. Venables, M.C., Achten, J., Jeukendrup, A.E.: Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J. Appl. Physiol. 98, 160–167 (2005)

    Article  Google Scholar 

  18. Kuzmiak-Glancy, S., Willis, W.T.: Skeletal muscle fuel selection occurs at the mitochondrial level. J. Exp. Biol. 217, 1993–2003 (2014)

    Article  Google Scholar 

  19. Frayn, K.N.: Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl. Physiol. 55, 628–634 (1983)

    Article  Google Scholar 

  20. Kiens, B., Éssen-Gustavsson, B., Christensen, N.J., Saltin, B.: Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J. Physiol. 469, 459–478 (1993)

    Article  Google Scholar 

  21. Romijn, J.A., Coyle, E.F., Sidossis, L.S., Gastaldelli, A., Horowitz, J.F., Endert, E., Wolfe, R.R.: Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Phys. 265, E380–E391 (1993)

    Google Scholar 

  22. Kelley, D.E., Mokan, M., Simoneau, J.-A.: Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J.Clin. Invest. 92, 91–98 (1993)

    Article  Google Scholar 

  23. Van Hall, G., Sacchetti, M., Rådegran, G., Saltin, B.: Human skeletal muscle fatty acid and glycerol metabolism during rest, exercise and recovery. J. Physiol. 543(3), 1047–1058 (2002)

    Article  Google Scholar 

  24. Van den Borne, J.J.G.C., Heetkamp, M.J.W., Alferink, A.J.J., Gerrits, W.J.J.: Moving from a complete energy balance towards substrate oxidation: use of stable isotopes. In: Gerrit, W.J.J., Labussière, E. (eds.) Indirect Calorimetry, Ch. 5, pp. 87–113. Wageningen Ac. Publ, The Netherlands (2015)

    Chapter  Google Scholar 

  25. Turcoatte, L.P., Hespel, P.J., Graham, T.E., Richter, E.A.: Impaired plasma FFA oxidation imposed by extreme CHO deficiency in contracting rat skeletal muscle. J. Appl. Physiol. 77, 517–525 (1994)

    Article  Google Scholar 

  26. Masoro, E.J., Felts, J.M.: Role of carbohydrate metabolism in promoting fatty acid oxidation. J. Biol. Chem. 231, 347–356 (1958)

    Google Scholar 

  27. McArdle, W.D., Katch, F.I., Katch, V.L.: Exercise Physiology: Nutrition, Energy and Human Performance, 7th edn. Lippincott Williams & Wilkins, Baltimore (2010)

    Google Scholar 

  28. Strange, K.: Cellular volume homeostasis. Adv. Physiol. Educ. 28, 155–159 (2004)

    Article  Google Scholar 

  29. Alberts, B., Bray, D., Hopkin, K., Johnson, A.D., Lewis, J., Raff, M., Roberts, K., Walter, P.: Essential Cell Biology, 4th edn. Garland Science, New York (2014)

    Google Scholar 

  30. Rich, P.R.: The molecular machinery of Keilin’s respiratory chain. Biochem. Soc. Trans. 31, 1095–1105 (2003)

    Article  Google Scholar 

  31. Smith, J.C., Hill, D.W.: Contribution of energy systems during a Wingate power test. Br. J. Sports Med. 25, 196–199 (1991)

    Article  Google Scholar 

  32. Berg, J.M., Tymoczko, J.L., Gatto, G.J., Stryer, L.: Biochemistry, 8th edn. Freeman, New York (2015)

    Google Scholar 

  33. Bloomstrand, E., Rådegran, G., Saltin, B.: Maximum rate of oxygen uptake by human skeletal muscle in relation to enzymes activities of enzymes in Krebs cycle. J. Physiol. 501, 455–460 (1997)

    Article  Google Scholar 

  34. Gifford, J.R., Garten, R.S., Nelson, A.D., Trinity, J.D., Layec, G., Witman, M.A.H., Weavil, J.C., Mangum, T., Hart, C., Etheredge, C., Jessop, J., Bledsoe, A., Morgan, D.E., Wray, D.W., Rossman, M.J., Richardson, R.S.: Symmorphosis and skeletal muscle \( {\overset{.}{V}}_{O_2\max } \): in vivo and in vitro measures reveal differing constraints in the exercise-trained and untrained human. J. Physiol. 594, 1741–1751 (2016)

    Article  Google Scholar 

  35. Rasmussen, U.F., Rasmussen, H.N., Krustrup, P., Quistorff, B., Saltin, B., Bangsbo, J.: Aerobic metabolism of human quadriceps muscle: in vivo data parallel measurements on isolated mitochondria. Am. J. Physiol. Endocrinol. Metab. 280, E301–E307 (2001)

    Article  Google Scholar 

  36. Graham, J.A., Scobie, G.W.: Muscle biopsy measurement of body water and intracellular electrolytes in children. Arch. Dis. Child. 45, 473–477 (1970)

    Article  Google Scholar 

  37. Antolic, A., Harrison, R., Farlinger, C., Cermak, N.M., Peters, S.J., LeBlanc, P., Roy, B.D.: Effect of extracellular osmolality on cell volume and resting metabolism in mammalian skeletal muscle. Am. J. Plysiol. Regul. Integr. Comp. Physiol. 292, R1994–R2000 (2007)

    Article  Google Scholar 

  38. Lindinger, M.I., Leung, M., Trajcevski, K.E., Hawke, T.J.: Volume regulation in mammalian skeletal muscle: the role of sodium-potassium-chloride cotransporters during exposure to hypertonic solutions. J. Physiol. 589, 2887–2899 (2011)

    Article  Google Scholar 

  39. Tavichakorntrakool, R., Prasongwattana, V., Sriboonlue, P., Puapairoj, A., Wongkham, C., Wiangsimma, T., Khunkitti, W., Triamjangarun, S., Tanratanauijit, M., Chamsuwan, A., Khunkitti, W., Yenchitsomanus, P.-T., Thongboonkerd, V.: K+, Na+, Mg2 +, Ca2 +, and water contents in human skeletal muscle: correlations among these monovalent and divalent cations and their alterations in K+-depleted subjects. Transl. Res. 150, 357–366 (2007)

    Article  Google Scholar 

  40. Cieslar, J., Huang, M.-T., Dobson, G.P.: Tissue spaces in rat heart, liver and skeletal muscle in vivo. Am. J. Phys. 275, R1530–R1536 (1998)

    Google Scholar 

  41. Lindinger, M.I., Heigenhauser, G.J.F.: The roles of ion fluxes in skeletal muscle fatigue. Can. J. Physiol. Pharmacol. 69, 246–253 (1991)

    Article  Google Scholar 

  42. Lindinger, M.I., Spriet, L.L., Hultman, E., Putman, T., McKelvie, R.S., Lands, L.C., Jones, N.L., Heigenhauser, G.J.F.: Plasma volume and ion regulation during exercise after low- and high-carbohydrate diets. Am. J. Physiol. Regul. Integr. Comp. Physiol. 266, R1896–R1906 (1994)

    Article  Google Scholar 

  43. Raja, M.K., Raymer, G.H., Moran, G.R., Marsh, G., Thompson, R.T.: Changes in tissue water content measured with multiple-frequency bioimpedance and metabolism measured with 31P-MRS during progressive forearm exercise. J. Appl. Physiol. 101, 1070–1075 (2006)

    Article  Google Scholar 

  44. Walsh, R.M., Noakes, T.D., Hawley, J.A., Dennis, S.C.: Impaired high-intensity cycling performance time at low levels of dehydration. Int. J. Sports Med. 15, 392–398 (1994)

    Article  Google Scholar 

  45. Sawka, M.N., Cheuvront, S.N., Kenefick, R.W.: Hypohydration and human performance: impact of environment and physiological mechanisms. Sports Med. 45(Suppl 1), S51–S60 (2015)

    Article  Google Scholar 

  46. Hughes, S.M., Schiaffino, S.: Control of muscle fibre size: a crucial factor in ageing. Acta Physiol. Scand. 167, 307–312 (1999)

    Article  Google Scholar 

  47. Bergman, B.C., Brooks, G.A.: Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men. J. Appl. Physiol. 86, 479–487 (1999)

    Article  Google Scholar 

  48. Peric, R., Meucci, M., Nikolowski, Z.: Fat utilization during high-intensity exercise: when does it ends? Sports Med. Open 2(1), 35–41 (2016)

    Article  Google Scholar 

  49. Ettema, G., Lorås, H.W.: Efficiency in cycling: a review. Eur. J. Appl. Physiol. 106, 1–14 (2009)

    Article  Google Scholar 

  50. Askew, G.N., Ellerby, D.J.: The mechanical power requirement of avian flight. Biol. Lett. 3, 445–448 (2007)

    Article  Google Scholar 

  51. Ellerby, B.J., Askew, G.N.: Modulation of flight muscle power output in budgerigars Melopsittacus undulates and zebra finches Taeniopygia guttata: in vitro muscle performance. J. Exp. Biol. 210, 3780–3788 (2007)

    Article  Google Scholar 

  52. Warrick, D., Hedrick, T., Fernandez, M.J., Tobalske, B., Biewener, A.A.: Hummingbird flight. Curr. Biol. 22, R472–R477 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

I wish to thank the Editor, Dr. Sonya Bahar, for her liberal attitude when handling the reviewing procedure of this paper, and the two unknown reviewers who took their time to read the original manuscript. Their constructive comments were most gratifying to me and enabled me to improve the paper in several important points.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Paglietti.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paglietti, A. Limit to steady-state aerobic power of skeletal muscles. J Biol Phys 44, 619–646 (2018). https://doi.org/10.1007/s10867-018-9510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-018-9510-y

Keywords

Navigation