Skip to main content

Advertisement

Log in

Notch in skeletal physiology and disease

  • Review Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

A Correction to this article was published on 19 October 2018

This article has been updated

Abstract

Notch (Notch1 through 4) are transmembrane receptors that play a fundamental role in cell differentiation and function. Notch receptors are activated following interactions with their ligands in neighboring cells. There are five classic ligands termed Jagged (Jag)1 and Jag2 and Delta-like (Dll)1, Dll3, and Dll4. Recent work has established Notch as a signaling pathway that plays a critical role in the differentiation and function of cells of the osteoblast and osteoclast lineages and in skeletal development and bone remodeling. The effects of Notch are cell-context dependent, and the four Notch receptors carry out specific functions in the skeleton. Gain- and loss-of-function mutations of components of the Notch signaling pathway result in a variety of congenital disorders with significant craniofacial and skeletal manifestations. The Notch ligand Jag1 is a determinant of bone mineral density, and Notch plays a role in the early phases of fracture healing. Alterations in Notch signaling are associated with osteosarcoma and with the metastatic potential of carcinoma of the breast and of the prostate. Controlling Notch signaling could prove useful in diseases of Notch gain-of-function and in selected skeletal disorders. However, clinical data on agents that modify Notch signaling are not available. In conclusion, Notch signaling is a novel pathway that regulates skeletal homeostasis in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 19 October 2018

    Table 2 of the original article was incorrect. The correct table is shown below.

Abbreviations

ANK :

ankyrin

BMD :

bone mineral density

CHSY :

chondroitin sulfate synthase

DII :

Delta-like

Dkk1 :

Dickkopf 1

EGF :

epidermal growth factor

HES :

hairy and enhancer of split

EOGT :

EGF-domain-specific O-linked N-acetylglucosamine transferase

HCS :

Hajdu-Cheney syndrome

HEY :

HES with a YRPW motif

HD :

heterodimerization domain

Jag :

jagged

MAML :

mastermind-like

LP :

leader peptide

LMS :

lateral meningocele syndrome

LNR :

Lin12-Notch repeats

Lnfg :

lunatic fringe

NRR :

negative regulatory region

NICD :

Notch intracellular domain

Nf :

nuclear factor

NLS :

nuclear localization sequence

PTH :

parathyroid hormone

PEST :

proline (P)-, glutamic acid (E)-, serine (S)-, and threonine (T)-rich

RANKL :

receptor activator of NF-κB ligand

RBPJκ :

recombination signal-binding protein for Ig of κ region

RAM :

RBPJκ-association module

TGF :

transforming growth factor

TMD :

transmembrane domain

References

  1. Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, Ross FP, Teitelbaum SL (2008) NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem 283:6509–6518

    CAS  PubMed  Google Scholar 

  2. Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM, Chen Y, Wang L, Zheng H, Sutton RE, Boyce BF, Lee B (2008) Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14:299–305

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K (2008) The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol 28:6402–6412

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14:306–314

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zanotti S, Canalis E (2016) Notch signaling and the skeleton. Endocr Rev 37:223–253

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Canalis E, Adams DJ, Boskey A, Parker K, Kranz L, Zanotti S (2013) Notch signaling in osteocytes differentially regulates cancellous and cortical bone remodeling. J Biol Chem 288:25614–25625

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Canalis E, Parker K, Feng JQ, Zanotti S (2013) Osteoblast lineage-specific effects of Notch activation in the skeleton. Endocrinology 154:623–634

    CAS  PubMed  Google Scholar 

  8. Sanchez-Irizarry C, Carpenter AC, Weng AP, Pear WS, Aster JC, Blacklow SC (2004) Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Mol Cell Biol 24:9265–9273

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97:1235–1294

    CAS  PubMed  Google Scholar 

  11. Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237–255

    CAS  PubMed  Google Scholar 

  12. Kovall RA (2007) Structures of CSL, Notch and Mastermind proteins: piecing together an active transcription complex. Curr Opin Struct Biol 17:117–127

    CAS  PubMed  Google Scholar 

  13. Wu J, Bresnick EH (2007) Bare rudiments of notch signaling: how receptor levels are regulated. Trends Biochem Sci 32:477–485

    CAS  PubMed  Google Scholar 

  14. Yuan Z, Friedmann DR, Vanderwielen BD, Collins KJ, Kovall RA (2012) Characterization of CSL (CBF-1, Su(H), Lag-1) mutants reveals differences in signaling mediated by Notch1 and Notch2. J Biol Chem 287:34904–34916

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zanotti S, Canalis E (2017) Parathyroid hormone inhibits Notch signaling in osteoblasts and osteocytes. Bone 103:159–167

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Deregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E (2006) Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/beta-catenin but not bone morphogenetic protein signaling. J Biol Chem 281:6203–6210

    CAS  PubMed  Google Scholar 

  17. Zanotti S, Canalis E (2014) Notch1 and Notch2 expression in osteoblast precursors regulates femoral microarchitecture. Bone 62:22–28

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Canalis E, Bridgewater D, Schilling L, Zanotti S (2015) Canonical Notch activation in osteocytes causes osteopetrosis. Am J Phys Endocrinol Metab 310:E171–E182

    Google Scholar 

  19. Tu X, Delgado-Calle J, Condon KW, Maycas M, Zhang H, Carlesso N, Taketo MM, Burr DB, Plotkin LI, Bellido T (2015) Osteocytes mediate the anabolic actions of canonical Wnt/beta-catenin signaling in bone. Proc Natl Acad Sci U S A 112:E478–E486

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875

    CAS  PubMed  Google Scholar 

  21. Yamada T, Yamazaki H, Yamane T, Yoshino M, Okuyama H, Tsuneto M, Kurino T, Hayashi S, Sakano S (2003) Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood 101:2227–2234

    CAS  PubMed  Google Scholar 

  22. Zhao B, Grimes SN, Li S, Hu X, Ivashkiv LB (2012) TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med 209:319–334

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Canalis E, Schilling L, Yee SP, Lee SK, Zanotti S (2016) Hajdu Cheney mouse mutants exhibit osteopenia, increased osteoclastogenesis and bone resorption. J Biol Chem 291:1538–1551

    CAS  PubMed  Google Scholar 

  24. Canalis E, Zanotti S (2017) Hairy and enhancer of split-related with YRPW motif-like (HeyL) is dispensable for bone remodeling in mice. J Cell Biochem 118:1819–1826

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Salie R, Kneissel M, Vukevic M, Zamurovic N, Kramer I, Evans G, Gerwin N, Mueller M, Kinzel B, Susa M (2010) Ubiquitous overexpression of Hey1 transcription factor leads to osteopenia and chondrocyte hypertrophy in bone. Bone 46:680–694

    CAS  PubMed  Google Scholar 

  26. Zanotti S, Canalis E (2013) Hairy and enhancer of split-related with YRPW motif (HEY)2 regulates bone remodeling in mice. J Biol Chem 288:21547–21557

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zanotti S, Smerdel-Ramoya A, Canalis E (2011) Hairy and enhancer of split (HES)1 is a determinant of bone mass. J Biol Chem 286:2648–2657

    CAS  PubMed  Google Scholar 

  28. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    CAS  PubMed  Google Scholar 

  29. Duggan SP, McCarthy JV (2016) Beyond gamma-secretase activity: the multifunctional nature of presenilins in cell signalling pathways. Cell Signal 28:1–11

    CAS  PubMed  Google Scholar 

  30. del Alamo D, Rouault H, Schweisguth F (2011) Mechanism and significance of cis-inhibition in Notch signalling. Curr Biol 21:R40–R47

    PubMed  Google Scholar 

  31. Zanotti S, Yu J, Adhikari S, Canalis E (2018) Glucocorticoids inhibit notch target gene expression in osteoblasts. J Cell Biochem 119:6016–6023

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Canalis E (2018) Clinical and experimental aspects of notch receptor signaling: Hajdu-Cheney syndrome and related disorders. Metabolism 80:48–56

    CAS  PubMed  Google Scholar 

  33. Isidor B, Lindenbaum P, Pichon O, Bézieau S, Dina C, Jacquemont S, Martin-Coignard D, Thauvin-Robinet C, le Merrer M, Mandel JL, David A, Faivre L, Cormier-Daire V, Redon R, le Caignec C (2011) Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat Genet 43:306–308

    CAS  PubMed  Google Scholar 

  34. Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, Kim KH, Pauli RM, Aftimos S, Stewart H, Kim CA, Holder-Espinasse M, Robertson SP, Drake WM, Trembath RC (2011) Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet 43:303–305

    CAS  PubMed  Google Scholar 

  35. Zhao W, Petit E, Gafni RI, Collins MT, Robey PG, Seton M, Miller KK, Mannstadt M (2013) Mutations in NOTCH2 in patients with Hajdu-Cheney syndrome. Osteoporos Int 24:2275–2281

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lehman RA, Stears JC, Wesenberg RL, Nusbaum ED (1977) Familial osteosclerosis with abnormalities of the nervous system and meninges. J Pediatr 90:49–54

    CAS  PubMed  Google Scholar 

  37. Gripp KW, Robbins KM, Sobreira NL et al (2015) Truncating mutations in the last exon of NOTCH3 cause lateral meningocele syndrome. Am J Med Genet A 167A:271–281

    PubMed  Google Scholar 

  38. Temtamy SA, Aglan MS (2008) Brachydactyly. Orphanet J Rare Dis 3:15

    PubMed  PubMed Central  Google Scholar 

  39. Tian J, Ling L, Shboul M, Lee H, O'Connor B, Merriman B, Nelson SF, Cool S, Ababneh OH, al-Hadidy A, Masri A, Hamamy H, Reversade B (2010) Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling. Am J Hum Genet 87:768–778

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Stittrich AB, Lehman A, Bodian DL, Ashworth J, Zong Z, Li H, Lam P, Khromykh A, Iyer RK, Vockley JG, Baveja R, Silva ES, Dixon J, Leon EL, Solomon BD, Glusman G, Niederhuber JE, Roach JC, Patel MS (2014) Mutations in NOTCH1 cause Adams-Oliver syndrome. Am J Hum Genet 95:275–284

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hassed SJ, Wiley GB, Wang S, Lee JY, Li S, Xu W, Zhao ZJ, Mulvihill JJ, Robertson J, Warner J, Gaffney PM (2012) RBPJ mutations identified in two families affected by Adams-Oliver syndrome. Am J Hum Genet 91:391–395

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Meester JA, Southgate L, Stittrich AB et al (2015) Heterozygous loss-of-function mutations in DLL4 cause Adams-Oliver syndrome. Am J Hum Genet 97:475–482

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shaheen R, Aglan M, Keppler-Noreuil K, Faqeih E, Ansari S, Horton K, Ashour A, Zaki MS, al-Zahrani F, Cueto-González AM, Abdel-Salam G, Temtamy S, Alkuraya FS (2013) Mutations in EOGT confirm the genetic heterogeneity of autosomal-recessive Adams-Oliver syndrome. Am J Hum Genet 92:598–604

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Emerick KM, Rand EB, Goldmuntz E, Krantz ID, Spinner NB, Piccoli DA (1999) Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology 29:822–829

    CAS  PubMed  Google Scholar 

  45. Crosnier C, Driancourt C, Raynaud N, Dhorne-Pollet S, Pollet N, Bernard O, Hadchouel M, Meunier-Rotival M (1999) Mutations in JAGGED1 gene are predominantly sporadic in Alagille syndrome. Gastroenterology 116:1141–1148

    CAS  PubMed  Google Scholar 

  46. Kamath BM, Bauer RC, Loomes KM, Chao G, Gerfen J, Hutchinson A, Hardikar W, Hirschfield G, Jara P, Krantz ID, Lapunzina P, Leonard L, Ling S, Ng VL, Hoang PL, Piccoli DA, Spinner NB (2012) NOTCH2 mutations in Alagille syndrome. J Med Genet 49:138–144

    CAS  PubMed  Google Scholar 

  47. McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB (2006) NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 79:169–173

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dunwoodie SL, Clements M, Sparrow DB, Sa X, Conlon RA, Beddington RS (2002) Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm. Development 129:1795–1806

    CAS  PubMed  Google Scholar 

  49. Cornier AS, Staehling-Hampton K, Delventhal KM, Saga Y, Caubet JF, Sasaki N, Ellard S, Young E, Ramirez N, Carlo SE, Torres J, Emans JB, Turnpenny PD, Pourquié O (2008) Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho-Levin syndrome. Am J Hum Genet 82:1334–1341

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sparrow DB, Chapman G, Wouters MA, Whittock NV, Ellard S, Fatkin D, Turnpenny PD, Kusumi K, Sillence D, Dunwoodie SL (2006) Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet 78:28–37

    CAS  PubMed  Google Scholar 

  51. Sparrow DB, Guillen-Navarro E, Fatkin D, Dunwoodie SL (2008) Mutation of hairy-and-enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum Mol Genet 17:3761–3766

    CAS  PubMed  Google Scholar 

  52. Descartes M, Rojnueangnit K, Cole L, Sutton A, Morgan SL, Patry L, Samuels ME (2014) Hajdu-Cheney syndrome: phenotypical progression with de-novo NOTCH2 mutation. Clin Dysmorphol 23:88–94

    PubMed  Google Scholar 

  53. Hajdu N, Kauntze R (1948) Cranio-skeletal dysplasia. Br J Radiol 21:42–48

    CAS  PubMed  Google Scholar 

  54. Sargin G, Cildag S, Senturk T (2013) Hajdu-Cheney syndrome with ventricular septal defect. Kaohsiung J Med Sci 29:343–344

    PubMed  Google Scholar 

  55. Sakka S, Gafni RI, Davies JH, Clarke B, Tebben P, Samuels M, Saraff V, Klaushofer K, Fratzl-Zelman N, Roschger P, Rauch F, Högler W (2017) Bone structural characteristics and response to bisphosphonate treatment in children with Hajdu-Cheney syndrome. J Clin Endocrinol Metab 102:4163–4172

    PubMed  PubMed Central  Google Scholar 

  56. Vollersen N, Hermans-Borgmeyer I, Cornils K, Fehse B, Rolvien T, Triviai I, Jeschke A, Oheim R, Amling M, Schinke T, Yorgan TA (2018) High bone turnover in mice carrying a pathogenic Notch2 mutation causing Hajdu-Cheney syndrome. J Bone Miner Res 33:70–83

    CAS  PubMed  Google Scholar 

  57. Zanotti S, Yu J, Bridgewater D, Wolf JM, Canalis E (2018) Mice harboring a Hajdu Cheney syndrome mutation are sensitized to osteoarthritis. Bone 114:198–205

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Galli-Tsinopoulou A, Kyrgios I, Giza S, Giannopoulou EM, Maggana I, Laliotis N (2012) Two-year cyclic infusion of pamidronate improves bone mass density and eliminates risk of fractures in a girl with osteoporosis due to Hajdu-Cheney syndrome. Minerva Endocrinol 37:283–289

    CAS  PubMed  Google Scholar 

  59. McKiernan FE (2008) Integrated anti-remodeling and anabolic therapy for the osteoporosis of Hajdu-Cheney syndrome: 2-year follow-up. Osteoporos Int 19:379–380

    CAS  PubMed  Google Scholar 

  60. Adami G, Rossini M, Gatti D, Orsolini G, Idolazzi L, Viapiana O, Scarpa A, Canalis E (2016) Hajdu Cheney syndrome; report of a novel NOTCH2 mutation and treatment with denosumab. Bone 92:150–156

    CAS  PubMed  Google Scholar 

  61. Engin F, Bertin T, Ma O, Jiang MM, Wang L, Sutton RE, Donehower LA, Lee B (2009) Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet 18:1464–1470

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tao J, Jiang MM, Jiang L, Salvo JS, Zeng HC, Dawson B, Bertin TK, Rao PH, Chen R, Donehower LA, Gannon F, Lee BH (2014) Notch activation as a driver of osteogenic sarcoma. Cancer Cell 26:390–401

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Canalis E, Sanjay A, Yu J, Zanotti S (2017) An antibody to Notch2 reverses the osteopenic phenotype of Hajdu-Cheney mutant male mice. Endocrinology 158:730–742

    PubMed  PubMed Central  Google Scholar 

  64. Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y, Finkle D, Venook R, Wu X, Ridgway J, Schahin-Reed D, Dow GJ, Shelton A, Stawicki S, Watts RJ, Zhang J, Choy R, Howard P, Kadyk L, Yan M, Zha J, Callahan CA, Hymowitz SG, Siebel CW (2010) Therapeutic antibody targeting of individual Notch receptors. Nature 464:1052–1057

    CAS  PubMed  Google Scholar 

  65. Kiel MJ, Velusamy T, Betz BL, Zhao L, Weigelin HG, Chiang MY, Huebner-Chan DR, Bailey NG, Yang DT, Bhagat G, Miranda RN, Bahler DW, Medeiros LJ, Lim MS, Elenitoba-Johnson KSJ (2012) Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med 209:1553–1565

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yu J, Zanotti S, Schilling L, Schoenherr C, Economides AN, Sanjay A, Canalis E (2018) Induction of the Hajdu-Cheney syndrome mutation in CD19 B cells in mice alters B-cell allocation but not skeletal homeostasis. Am J Pathol 188:1430–1446

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yu J, Zanotti S, Walia B, Jellison E, Sanjay A, Canalis E (2018) The Hajdu Cheney mutation is a determinant of B-cell allocation of the splenic marginal zone. Am J Pathol 188:149–159

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gripp KW, Scott CI Jr, Hughes HE et al (1997) Lateral meningocele syndrome: three new patients and review of the literature. Am J Med Genet 70:229–239

    CAS  PubMed  Google Scholar 

  69. Gripp KW (2011) Lateral meningocele syndrome and Hajdu-Cheney syndrome: different disorders with overlapping phenotypes. Am J Med Genet A 155A:1773–1774 author reply 1775

    PubMed  Google Scholar 

  70. Snape KM, Ruddy D, Zenker M, Wuyts W, Whiteford M, Johnson D, Lam W, Trembath RC (2009) The spectra of clinical phenotypes in aplasia cutis congenita and terminal transverse limb defects. Am J Med Genet A 149A:1860–1881

    CAS  PubMed  Google Scholar 

  71. Hoyme HE, Jones KL, Van Allen MI, Saunders BS, Benirschke K (1982) Vascular pathogenesis of transverse limb reduction defects. J Pediatr 101:839–843

    CAS  PubMed  Google Scholar 

  72. Alagille D, Estrada A, Hadchouel M, Gautier M, Odievre M, Dommergues JP (1987) Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases. J Pediatr 110:195–200

    CAS  PubMed  Google Scholar 

  73. Morrissette JD, Colliton RP, Spinner NB (2001) Defective intracellular transport and processing of JAG1 missense mutations in Alagille syndrome. Hum Mol Genet 10:405–413

    CAS  PubMed  Google Scholar 

  74. Boyer-Di Ponio J, Wright-Crosnier C, Groyer-Picard MT, Driancourt C, Beau I, Hadchouel M, Meunier-Rotival M (2007) Biological function of mutant forms of JAGGED1 proteins in Alagille syndrome: inhibitory effect on Notch signaling. Hum Mol Genet 16:2683–2692

    CAS  PubMed  Google Scholar 

  75. Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C, Gendron-Maguire M, Rand EB, Weinmaster G, Gridley T (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8:723–730

    CAS  PubMed  Google Scholar 

  76. McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, Herzlinger D, Weinmaster G, Jiang R, Gridley T (2001) Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128:491–502

    CAS  PubMed  Google Scholar 

  77. Turnpenny PD, Whittock N, Duncan J, Dunwoodie S, Kusumi K, Ellard S (2003) Novel mutations in DLL3, a somitogenesis gene encoding a ligand for the Notch signalling pathway, cause a consistent pattern of abnormal vertebral segmentation in spondylocostal dysostosis. J Med Genet 40:333–339

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kusumi K, Sun ES, Kerrebrock AW, Bronson RT, Chi DC, Bulotsky MS, Spencer JB, Birren BW, Frankel WN, Lander ES (1998) The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nat Genet 19:274–278

    CAS  PubMed  Google Scholar 

  79. Saga Y, Hata N, Koseki H, Taketo MM (1997) Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev 11:1827–1839

    CAS  PubMed  Google Scholar 

  80. Kung AW, Xiao SM, Cherny S et al (2010) Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. Am J Hum Genet 86:229–239

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dishowitz MI, Terkhorn SP, Bostic SA, Hankenson KD (2012) Notch signaling components are upregulated during both endochondral and intramembranous bone regeneration. J Orthop Res 30:296–303

    CAS  PubMed  Google Scholar 

  82. Wang C, Shen J, Yukata K, Inzana JA, O'Keefe RJ, Awad HA, Hilton MJ (2015) Transient gamma-secretase inhibition accelerates and enhances fracture repair likely via Notch signaling modulation. Bone 73:77–89

    PubMed  Google Scholar 

  83. Wang C, Inzana JA, Mirando AJ, Ren Y, Liu Z, Shen J, O'Keefe RJ, Awad HA, Hilton MJ (2016) NOTCH signaling in skeletal progenitors is critical for fracture repair. J Clin Invest 126:1471–1481

    PubMed  PubMed Central  Google Scholar 

  84. Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S, Carmeliet G, Kronenberg HM (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19:329–344

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ramasamy SK, Kusumbe AP, Wang L, Adams RH (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507:376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dishowitz MI, Mutyaba PL, Takacs JD, Barr AM, Engiles JB, Ahn J, Hankenson KD (2013) Systemic inhibition of canonical Notch signaling results in sustained callus inflammation and alters multiple phases of fracture healing. PLoS One 8:e68726

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tanaka M, Setoguchi T, Hirotsu M, Gao H, Sasaki H, Matsunoshita Y, Komiya S (2009) Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br J Cancer 100:1957–1965

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dailey DD, Anfinsen KP, Pfaff LE, Ehrhart EJ, Charles JB, Bonsdorff TB, Thamm DH, Powers BE, Jonasdottir TJ, Duval DL (2013) HES1, a target of Notch signaling, is elevated in canine osteosarcoma, but reduced in the most aggressive tumors. BMC Vet Res 9:130

    PubMed  PubMed Central  Google Scholar 

  89. Hughes DP (2009) How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize. Cancer Treat Res 152:479–496

    PubMed  Google Scholar 

  90. Zhang Z, Wang H, Ikeda S, Fahey F, Bielenberg D, Smits P, Hauschka PV (2010) Notch3 in human breast cancer cell lines regulates osteoblast-cancer cell interactions and osteolytic bone metastasis. Am J Pathol 177:1459–1469

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sethi N, Dai X, Winter CG, Kang Y (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19:192–205

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zayzafoon M, Abdulkadir SA, McDonald JM (2004) Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines. J Biol Chem 279:3662–3670

    CAS  PubMed  Google Scholar 

  93. Ryeom SW (2011) The cautionary tale of side effects of chronic Notch1 inhibition. J Clin Invest 121:508–509

    CAS  PubMed  PubMed Central  Google Scholar 

  94. De Strooper B, Annaert W, Cupers P et al (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398:518–522

    PubMed  Google Scholar 

  95. Ilagan MX, Kopan R (2013) Selective blockade of transport via SERCA inhibition: the answer for oncogenic forms of Notch? Cancer Cell 23:267–269

    CAS  PubMed  Google Scholar 

  96. Moellering RE, Cornejo M, Davis TN, Del BC, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE (2009) Direct inhibition of the NOTCH transcription factor complex. Nature 462:182–188

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Li K, Li Y, Wu W, Gordon WR, Chang DW, Lu M, Scoggin S, Fu T, Vien L, Histen G, Zheng J, Martin-Hollister R, Duensing T, Singh S, Blacklow SC, Yao Z, Aster JC, Zhou BBS (2008) Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J Biol Chem 283:8046–8054

    CAS  PubMed  Google Scholar 

  98. Zanotti S, Canalis E (2010) Notch and the skeleton. Mol Cell Biol 30:886–896

    CAS  PubMed  Google Scholar 

  99. Aste-Amezaga M, Zhang N, Lineberger JE et al (2010) Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS One 5:e9094

    PubMed  PubMed Central  Google Scholar 

  100. Yan M, Callahan CA, Beyer JC, Allamneni KP, Zhang G, Ridgway JB, Niessen K, Plowman GD (2010) Chronic DLL4 blockade induces vascular neoplasms. Nature 463:E6–E7

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Mary Yurczak for secretarial assistance.

Funding

This work was supported by Grants AR063049, AR068160, and AR072987 from the National Institute of Arthritis and Musculoskeletal and Skin Diseases and Grant DK045227 from the National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Canalis.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canalis, E. Notch in skeletal physiology and disease. Osteoporos Int 29, 2611–2621 (2018). https://doi.org/10.1007/s00198-018-4694-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-018-4694-3

Keywords

Navigation