Skip to main content

Advertisement

Log in

IgA Fc-folate conjugate activates and recruits neutrophils to directly target triple-negative breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

According to the American Cancer Society, 1 in 8 women in the U.S. will develop breast cancer, with triple-negative breast cancer (TNBC) comprising 15–20% of all breast cancer cases. TNBC is an aggressive subtype due to its high metastatic potential and lack of targeted therapy. Recently, folate receptor alpha (FRA) is found to be expressed on 80% of TNBC with high expression correlating with poor prognosis. In this study, we examined whether binding IgA Fc-folate molecules to FRA receptors on TNBC cells can elicit and induce neutrophils (PMNs), by binding their FcαR1 receptors, to destroy TNBC cells.

Methods

FRA was analyzed on TNBC cells and binding assays were performed using 3H-folate. Fc-folate was synthesized by linking Fc fragments of IgA via amine groups to folate. Binding specificity and antibody-dependent cellular cytotoxicity (ADCC) potential of Fc-folate to FcαR1 were confirmed by measuring PMN adhesion and myeloperoxidase (MPO) release in a cell-based ELISA. Fc-folate binding to FRA-expressing TNBC cells inducing PMNs to destroy these cells was determined using 51Cr-release and calcein-labeling assays.

Results

Our results demonstrate expression of FRA on TNBC cells at levels consistent with folate binding. Fc-folate binds with high affinity to FRA compared to whole IgA-folate and induces MPO release from PMN when bound to FcαR1. Fc-folate inhibited binding of 3H-folate to TNBC cells and induced significant cell lysis of TNBC cells when incubated in the presence of PMNs.

Conclusion

These findings support the hypothesis that an IgA Fc-folate conjugate can destroy TNBC cells by eliciting PMN-mediated ADCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel R, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30

    Article  Google Scholar 

  2. Cleere DW (2010) Triple-negative breast cancer: a clinical update. Community Oncol 7(5):203–211

    Article  Google Scholar 

  3. BreastCancer.org (2013) How triple-negative breast cancer behaves and looks

  4. Gonzalez-Angulo AM, Timms KM, Liu S, Chen H, Litton JK, Potter J, Lanchbury JS, Stemke-Hale K, Hennessy BT, Arun BK et al (2011) Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res 17(5):1082–1089

    Article  CAS  Google Scholar 

  5. O’Shannessy DJ, Somers EB, Albone E, Cheng X, Park YC, Tomkowicz BE, Hamuro Y, Kohl TO, Forsyth TM, Smale R et al (2011) Characterization of the human folate receptor alpha via novel antibody-based probes. Oncotarget 2(12):1227–1243

    Article  Google Scholar 

  6. Weitman SD, Weinberg AG, Coney LR, Zurawski VR, Jennings DS, Kamen BA (1992) Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res 52(23):6708–6711

    CAS  PubMed  Google Scholar 

  7. O’Shannessy DJ, Somers EB, Maltzman J, Smale R, Fu YS (2012) Folate receptor alpha (FRA) expression in breast cancer: identification of a new molecular subtype and association with triple negative disease. Springerplus 1:22

    Article  Google Scholar 

  8. Zhang Z, Wang J, Tacha DE, Li P, Bremer RE, Chen H, Wei B, Xiao X, Da J, Skinner K et al (2013) Folate receptor alpha associated with triple-negative breast cancer and poor prognosis. Arch Pathol Lab Med 138(7):890–895

    Article  Google Scholar 

  9. Li H, Lu Y, Piao L, Wu J, Yang X, Kondadasula SV, Carson WE, Lee RJ (2010) Folate-immunoglobulin G as an anticancer therapeutic antibody. Bioconjug Chem 21(5):961–968

    Article  CAS  Google Scholar 

  10. Lu Y, Low PS (2002) Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol Immunother 51(3):153–162

    Article  CAS  Google Scholar 

  11. Ebel W, Routhier EL, Foley B, Jacob S, McDonough JM, Patel RK, Turchin HA, Chao Q, Kline JB, Old LJ et al (2007) Preclinical evaluation of MORAb-003, a humanized monoclonal antibody antagonizing folate receptor-alpha. Cancer Immun 7:6

    PubMed  PubMed Central  Google Scholar 

  12. Wen Y, Graybill WS, Previs RA, Hu W, Ivan C, Mangala LS, Zand B, Nick AM, Jennings NB, Dalton HJ et al (2015) Immunotherapy targeting folate receptor induces cell death associated with autophagy in ovarian cancer. Clin Cancer Res 21(2):448–459

    Article  CAS  Google Scholar 

  13. Lin J, Spidel JL, Maddage CJ, Rybinski KA, Kennedy RP, Krauthauser CL, Park YC, Albone EF, Jacob S, Goserud MT et al (2013) The antitumor activity of the human FOLR1-specific monoclonal antibody, farletuzumab, in an ovarian cancer mouse model is mediated by antibody-dependent cellular cytotoxicity. Cancer Biol Ther 14(11):1032–1038

    Article  CAS  Google Scholar 

  14. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6(4):443–446

    Article  CAS  Google Scholar 

  15. Garcia-Foncillas J, Diaz-Rubio E (2010) Progress in metastatic colorectal cancer: growing role of cetuximab to optimize clinical outcome. Clin Transl Oncol 12(8):533–542

    Article  CAS  Google Scholar 

  16. Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:275–290

    Article  CAS  Google Scholar 

  17. Dillman RO (1999) Perceptions of herceptin: a monoclonal antibody for the treatment of breast cancer. Cancer Biother Radiopharm 14(1):5–10

    Article  CAS  Google Scholar 

  18. Green MC, Murray JL, Hortobagyi GN (2000) Monoclonal antibody therapy for solid tumors. Cancer Treat Rev 26(4):269–286

    Article  CAS  Google Scholar 

  19. Rudnick SI, Lou J, Shaller CC, Tang Y, Klein-Szanto AJ, Weiner LM, Marks JD, Adams GP (2011) Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. Cancer Res 71(6):2250–2259

    Article  CAS  Google Scholar 

  20. Hamre R, Farstad IN, Brandtzaeg P, Morton HC (2003) Expression and modulation of the human immunoglobulin A Fc receptor (CD89) and the FcR gamma chain on myeloid cells in blood and tissue. Scand J Immunol 57(6):506–516

    Article  CAS  Google Scholar 

  21. Bakema JE, Ganzevles SH, Fluitsma DM, Schilham MW, Beelen RH, Valerius T, Lohse S, Glennie MJ, Medema JP, van Egmond M (2011) Targeting FcalphaRI on polymorphonuclear cells induces tumor cell killing through autophagy. J Immunol 187(2):726–732

    Article  CAS  Google Scholar 

  22. Deo YM, Sundarapandiyan K, Keler T, Wallace PK, Graziano RF (1998) Bispecific molecules directed to the Fc receptor for IgA (Fc alpha RI, CD89) and tumor antigens efficiently promote cell-mediated cytotoxicity of tumor targets in whole blood. J Immunol 160(4):1677–1686

    CAS  PubMed  Google Scholar 

  23. Guettinger Y, Barbin K, Peipp M, Bruenke J, Dechant M, Horner H, Thierschmidt D, Valerius T, Repp R, Fey GH et al (2010) A recombinant bispecific single-chain fragment variable specific for HLA class II and Fc alpha RI (CD89) recruits polymorphonuclear neutrophils for efficient lysis of malignant B lymphoid cells. J Immunol 184(3):1210–1217

    Article  CAS  Google Scholar 

  24. Huls G, Heijnen IA, Cuomo E, van der Linden J, Boel E, van de Winkel JG, Logtenberg T (1999) Antitumor immune effector mechanisms recruited by phage display-derived fully human IgG1 and IgA1 monoclonal antibodies. Cancer Res 59(22):5778–5784

    CAS  PubMed  Google Scholar 

  25. Lohse S, Derer S, Beyer T, Klausz K, Peipp M, Leusen JH, van de Winkel JG, Dechant M, Valerius T (2011) Recombinant dimeric IgA antibodies against the epidermal growth factor receptor mediate effective tumor cell killing. J Immunol 186(6):3770–3778

    Article  CAS  Google Scholar 

  26. Otten MA, Rudolph E, Dechant M, Tuk CW, Reijmers RM, Beelen RH, van de Winkel JG, van Egmond M (2005) Immature neutrophils mediate tumor cell killing via IgA but not IgG Fc receptors. J Immunol 174(9):5472–5480

    Article  CAS  Google Scholar 

  27. Stockmeyer B, Elsasser D, Dechant M, Repp R, Gramatzki M, Glennie MJ, van de Winkel JG, Valerius T (2001) Mechanisms of G-CSF- or GM-CSF-stimulated tumor cell killing by Fc receptor-directed bispecific antibodies. J Immunol Methods 248(1–2):103–111

    Article  CAS  Google Scholar 

  28. van Egmond M, van Spriel AB, Vermeulen H, Huls G, van Garderen E, van de Winkel JG (2001) Enhancement of polymorphonuclear cell-mediated tumor cell killing on simultaneous engagement of fcgammaRI (CD64) and fcalphaRI (CD89). Cancer Res 61(10):4055–4060

    PubMed  Google Scholar 

  29. Speyer CL, Gao H, Rancilio NJ, Neff TA, Huffnagle GB, Sarma JV, Ward PA (2004) Novel chemokine responsiveness and mobilization of neutrophils during sepsis. Am J Pathol 165(6):2187–2196

    Article  CAS  Google Scholar 

  30. Westerhof GR, Schornagel JH, Kathmann I, Jackman AL, Rosowsky A, Forsch RA, Hynes JB, Boyle FT, Peters GJ, Pinedo HM et al (1995) Carrier- and receptor-mediated transport of folate antagonists targeting folate-dependent enzymes: correlates of molecular-structure and biological activity. Mol Pharmacol 48(3):459–471

    CAS  PubMed  Google Scholar 

  31. Leamon CP, You F, Santhapuram HK, Fan M, Vlahov IR (2009) Properties influencing the relative binding affinity of pteroate derivatives and drug conjugates thereof to the folate receptor. Pharm Res 26(6):1315–1323

    Article  CAS  Google Scholar 

  32. Gall JM, Davol PA, Grabert RC, Deaver M, Lum LG (2005) T cells armed with anti-CD3 x anti-CD20 bispecific antibody enhance killing of CD20 + malignant B cells and bypass complement-mediated rituximab resistance in vitro. Exp Hematol 33(4):452–459

    Article  CAS  Google Scholar 

  33. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338(2):284–293

    Article  CAS  Google Scholar 

  34. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR Jr, Kamen BA (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52(12):3396–3401

    CAS  PubMed  Google Scholar 

  35. Clark RA, Klebanoff SJ (1975) Neutrophil-mediated tumor cell cytotoxicity: role of the peroxidase system. J Exp Med 141(6):1442–1447

    Article  CAS  Google Scholar 

  36. Campbell IG, Jones TA, Foulkes WD, Trowsdale J (1991) Folate-binding protein is a marker for ovarian cancer. Cancer Res 51(19):5329–5338

    CAS  PubMed  Google Scholar 

  37. Elwood PC, Nachmanoff K, Saikawa Y, Page ST, Pacheco P, Roberts S, Chung KN (1997) The divergent 5′ termini of the alpha human folate receptor (hFR) mRNAs originate from two tissue-specific promoters and alternative splicing: characterization of the alpha hFR gene structure. Biochemistry 36(6):1467–1478

    Article  CAS  Google Scholar 

  38. Maziarz KM, Monaco HL, Shen F, Ratnam M (1999) Complete mapping of divergent amino acids responsible for differential ligand binding of folate receptors alpha and beta. J Biol Chem 274(16):11086–11091

    Article  CAS  Google Scholar 

  39. Shen F, Wang H, Zheng X, Ratnam M (1997) Expression levels of functional folate receptors alpha and beta are related to the number of N-glycosylated sites. Biochem J 327(Pt 3):759–764

    Article  CAS  Google Scholar 

  40. Wu M, Gunning W, Ratnam M (1999) Expression of folate receptor type alpha in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix. Cancer Epidemiol Biomarkers Prev 8(9):775–782

    CAS  PubMed  Google Scholar 

  41. ClinicalTrials.gov (2012) First-in-human study to evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of IMGN853 in adults with ovarian cancer and other FOLR1-Positive Solid Tumors (IMGN-0401). Retrieved from https://clinicaltrials.gov/ct2/show/study/NCT01609556First-in-Human

  42. ClinicalTrials.gov (2014) A study to assess the efficacy and safety of farletuzamab (MORAb 003) in combination with carboplatin plus paclitaxel or carboplatin plus pegylated liposomal doxorubicin (PLD) in subjects with low CA125 platinum-sensitive ovarian cancer. Retrieved from https://clinicaltrials.gov/ct2/show/study/NCT02289950

  43. ClinicalTrials.gov (2015) Phase I trial of ONX-801 once weekly or alternate weekly (ONX-0801). Retrieved from https://clinicaltrials.gov/ct2/show/study/NCT02360345

  44. Feuerstein A (2014) Endocyte falls on ovarian cancer drug blowup. The Street

  45. ClinicalTrials.gov (2010) Study for women with platinum resistant ovarian cancer evaluating EC145 in combination with doxil (PROCEED). Retrieved from https://clinicaltrials.gov/ct2/showstudy/NCT01170650?term=Endocyte

  46. ClinicalTrials.gov (2012) A study of MK-8109 (vintafolide) given along or with chemotherapy in participants with advanced cancers (MK-8109-01). https://clinicaltrials.gov/ct2/show/study/NCT01688791?term=Endocyte

  47. Boross P, Lohse S, Nederend M, Jansen JH, van Tetering G, Dechant M, Peipp M, Royle L, Liew LP, Boon L et al (2013) IgA EGFR antibodies mediate tumour killing in vivo. EMBO Mol Med 5(8):1213–1226

    Article  CAS  Google Scholar 

  48. Meyer S, Nederend M, Jansen JH, Reiding KR, Jacobino SR, Meeldijk J, Bovenschen N, Wuhrer M, Valerius T, Ubink R et al (2016) Improved in vivo anti-tumor effects of IgA-Her2 antibodies through half-life extension and serum exposure enhancement by FcRn targeting. MAbs 8(1):87–98

    Article  CAS  Google Scholar 

  49. Reljic R (2006) In search of the elusive mouse macrophage Fc-alpha receptor. Immunol Lett 107(1):80–81

    Article  Google Scholar 

  50. Bakema JE, van Egmond M (2011) Immunoglobulin A: a next generation of therapeutic antibodies? MAbs 3(4):352–361

    Article  Google Scholar 

  51. Gregory AD, Houghton AM (2011) Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res 71(7):2411–2416

    Article  CAS  Google Scholar 

  52. Stewart WW, Mazengera RL, Shen L, Kerr MA (1994) Unaggregated serum IgA binds to neutrophil Fc alpha R at physiological concentrations and is endocytosed but cross-linking is necessary to elicit a respiratory burst. J Leukoc Biol 56(4):481–487

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Stephen Ethier for kindly providing us with his SUM cell lines and Dr. Larry Matherly for kindly providing us with the iGROV1 cell line. We are also thankful to Dr. Larry Lum for all his help, insight, and advice throughout this study.

Funding

A portion of this work was supported by an award from the Barbara Ann Karmanos Cancer Institute Tumor Microenvironment Program and by an NIH STTR award (R41CA213548) funded by the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia L. Speyer.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were performed in accordance with the Declaration of Helsinki and have been approved following Expedited Review (IRB #123016MP4E) by the Chairperson for the Wayne State University Institutional Review Board (MP4).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 622 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frontera, E.D., Khansa, R.M., Schalk, D.L. et al. IgA Fc-folate conjugate activates and recruits neutrophils to directly target triple-negative breast cancer cells. Breast Cancer Res Treat 172, 551–560 (2018). https://doi.org/10.1007/s10549-018-4941-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-4941-5

Keywords

Navigation