Skip to main content
Log in

Classification of Tumor Epithelium and Stroma by Exploiting Image Features Learned by Deep Convolutional Neural Networks

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The tumor–stroma ratio (TSR) reflected on hematoxylin and eosin (H&E)-stained histological images is a potential prognostic factor for survival. Automatic image processing techniques that allow for high-throughput and precise discrimination of tumor epithelium and stroma are required to elevate the prognostic significance of the TSR. As a variant of deep learning techniques, transfer learning leverages nature-images features learned by deep convolutional neural networks (CNNs) to relieve the requirement of deep CNNs for immense sample size when handling biomedical classification problems. Herein we studied different transfer learning strategies for accurately distinguishing epithelial and stromal regions of H&E-stained histological images acquired from either breast or ovarian cancer tissue. We compared the performance of important deep CNNs as either a feature extractor or as an architecture for fine-tuning with target images. Moreover, we addressed the current contradictory issue about whether the higher-level features would generalize worse than lower-level ones because they are more specific to the source-image domain. Under our experimental setting, the transfer learning approach achieved an accuracy of 90.2 (vs. 91.1 for fine tuning) with GoogLeNet, suggesting the feasibility of using it in assisting pathology-based binary classification problems. Our results also show that the superiority of the lower-level or the higher-level features over the other ones was determined by the architecture of deep CNNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Adeli, E., G. Wu, B. Saghafi, L. An, and D. Shen. Kernel-based joint feature selection and max-margin classification for early diagnosis of Parkinson’s disease. Sci. Rep. 7:41069, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Antony, J., K. McGuinness, N. E. O. Connor, and K. Moran. Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. In: ICPR 2016 Proceedings, 2016, pp. 1195–1200. http://arxiv.org/abs/1609.02469.

  3. Beck, A. H., A. R. Sangoi, S. Leung, R. J. Marinelli, T. O. Nielsen, M. J. van de Vijver, R. B. West, M. van de Rijn, and D. Koller. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3:108ra113, 2011.

    Article  PubMed  Google Scholar 

  4. Bengio, Y., A. Courville, and P. Vincent. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35:1798–1828, 2013.

    Article  PubMed  Google Scholar 

  5. Carneiro, G., J. Nascimento, and A. P. Bradley. Unregistered multiview mammogram analysis with pre-trained deep learning models. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9351, pp. 652–660, 2015.

  6. Cireşan, D. C., A. Giusti, L. M. Gambardella, and J. Schmidhuber. Mitosis detection in breast cancer histology images with deep neural networks. Med. Image Comput. Comput. Interv. 16(Pt2):411–418, 2013.

    Google Scholar 

  7. de Kruijf, E. M., J. G. H. van Nes, C. J. H. van de Velde, H. Putter, V. T. H. B. M. Smit, G. J. Liefers, P. J. K. Kuppen, R. A. E. M. Tollenaar, and W. E. Mesker. Tumor–stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients. Breast Cancer Res. Treat. 125:687–696, 2011.

    Article  PubMed  Google Scholar 

  8. Esteva, A., B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Girshick, R., J. Donahue, T. Darrell, and J. Malik. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38:142–158, 2016.

    Article  PubMed  Google Scholar 

  10. Gurcan, M. N., L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot, and B. Yener. Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2:147–171, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Huynh, B. Q., H. Li, and M. L. Giger. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J. Med. Imaging 3:34501, 2016.

    Article  Google Scholar 

  12. Ioffe, S., and C. Szegedy. Batch normalization: accelerating deep network training by reducing internal covariate shift. Arxiv 1–11, 2015. https://doi.org/10.1007/s13398-014-0173-7.2.

  13. Krizhevsky, A., I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012. https://doi.org/10.1016/j.protcy.2014.09.007.

    Article  Google Scholar 

  14. LeCun, Y., Y. Bengio, and G. Hinton. Deep learning. Nature 521:436–444, 2015.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, J., J. Liu, J. Li, Y. Chen, X. Guan, X. Wu, C. Hao, Y. Sun, Y. Wang, and X. Wang. Tumor–stroma ratio is an independent predictor for survival in early cervical carcinoma. Gynecol. Oncol. 132:81–86, 2014.

    Article  PubMed  Google Scholar 

  16. Long, X., L. Chen, C. Jiang, and L. Zhang. Prediction and classification of Alzheimer disease based on quantification of MRI deformation. PLoS ONE 12:1–19, 2017.

    Google Scholar 

  17. Lu, P., L. Barazzetti, V. Chandran, K. Gavaghan, S. Weber, N. Gerber, and M. Reyes. Highly accurate facial nerve segmentation refinement from CBCT/CT Imaging using a super resolution classification approach. IEEE Trans. Biomed. Eng. 65:178–188, 2017.

    Article  PubMed  Google Scholar 

  18. Mehrtash, A., A. Sedghi, M. Ghafoorian, M. Taghipour, C. M. Tempany, W. M. Wells, T. Kapur, P. Mousavi, P. Abolmaesumi, and A. Fedorov. Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks. In: Proc SPIE Int Soc Opt Eng, 2017. https://doi.org/10.1117/12.2277123.

  19. Menegola, A., M. Fornaciali, R. Pires, S. Avila, and E. Valle. Towards automated melanoma screening: exploring transfer learning schemes, 2016. http://arxiv.org/abs/1609.01228.

  20. Moorman, A. M., R. Vink, H. J. Heijmans, J. van der Palen, and E. A. Kouwenhoven. The prognostic value of tumour-stroma ratio in triple-negative breast cancer. Eur. J. Surg. Oncol. 38:307–313, 2012.

    Article  CAS  PubMed  Google Scholar 

  21. Mossotto, E., J. J. Ashton, T. Coelho, R. M. Beattie, B. D. MacArthur, and S. Ennis. Classification of paediatric inflammatory bowel disease using machine learning. Sci. Rep. 7:2427, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Owjimehr, M., H. Danyali, M. S. Helfroush, and A. Shakibafard. Staging of fatty liver diseases based on hierarchical classification and feature fusion for back-scan–converted ultrasound images. Ultrason. Imaging 39:79–95, 2017.

    Article  PubMed  Google Scholar 

  23. Pan, Y., W. Huang, Z. Lin, W. Zhu, J. Zhou, J. Wong, and Z. Ding. Brain tumor grading based on neural network s and convolutional neural networks. In: Eng. Med. Biol. Soc. (EMBC), 2015 37th Annu. Int. Conf. IEEE, pp. 699–702, 2015. https://doi.org/10.1109/embc.2015.7318458.

  24. Pota, M., E. Scalco, G. Sanguineti, A. Farneti, G. M. Cattaneo, G. Rizzo, and M. Esposito. Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification. Artif. Intell. Med. 2017. https://doi.org/10.1016/j.artmed.2017.03.004.

    Article  PubMed  Google Scholar 

  25. Reis, S., P. Gazinska, J. Hipwell, T. Mertzanidou, K. Naidoo, N. Williams, S. Pinder, and D. J. Hawkes. Automated classification of breast cancer stroma maturity from histological images. IEEE Trans. Biomed. Eng. 2017. https://doi.org/10.1109/tbme.2017.2665602.

    Article  PubMed  Google Scholar 

  26. Roy, D. AUTO CONTRAST, 2009. http://www.mathworks.com/matlabcentral/fileexchange/10566-auto-contrast.

  27. Sethi, A., L. Sha, A. R. Vahadane, R. J. Deaton, N. Kumar, V. Macias, and P. H. Gann. Empirical comparison of color normalization methods for epithelial-stromal classification in H and E images. J. Pathol. Inform. 7:17, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shin, H. C., H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35:1285–1298, 2016.

    Article  PubMed  Google Scholar 

  29. Stanford Tissue Microarray Database. https://tma.im/cgi-bin/home.pl.

  30. Tran, H., H. Phan, A. Kumar, J. Kim, and D. Feng. Transfer learning of a convolutional neural network for Hep-2 cell image classification. In: ISBI, pp. 1208–1211, 2016.

  31. Wang, J., X. Yang, H. Cai, W. Tan, C. Jin, and L. Li. Discrimination of breast cancer with microcalcifications on mammography by deep learning. Sci. Rep. 6:27327, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xi, K.-X., Y.-S. Wen, C.-M. Zhu, X.-Y. Yu, R.-Q. Qin, X.-W. Zhang, Y.-B. Lin, T.-H. Rong, W.-D. Wang, Y.-Q. Chen, and L.-J. Zhang. Tumor–stroma ratio (TSR) in non-small cell lung cancer (NSCLC) patients after lung resection is a prognostic factor for survival. J. Thorac. Dis. 9:4017–4026, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xu, J., X. Luo, G. Wang, H. Gilmore, and A. Madabhushi. A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191:214–223, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang, M., X. Li, Z. Li, Z. Ou, M. Liu, S. Liu, X. Li, and S. Yang. Gene features selection for three-class disease classification via multiple orthogonal partial least square discriminant analysis and S-plot using microarray data. PLoS ONE 8:1–12, 2013.

    Article  Google Scholar 

  35. Yoshida, H., T. Shimazu, T. Kiyuna, A. Marugame, Y. Yamashita, E. Cosatto, H. Taniguchi, S. Sekine, and A. Ochiai. Automated histological classification of whole-slide images of gastric biopsy specimens. Gastric Cancer 2017. https://doi.org/10.1007/s10120-017-0731-8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang, R., Y. Zheng, T. W. C. Mak, R. Yu, S. H. Wong, J. Y. W. Lau, and C. C. Y. Poon. Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE J. Biomed. Heal. Inform 21:41–47, 2017.

    Article  Google Scholar 

  37. Zhou, B., A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. Adv. Neural Inf. Process. Syst. 27:487–495, 2014. http://papers.nips.cc/paper/5349-learning-deep-features-for-scene-recognition-using-places-database.pdf.

Download references

Acknowledgments

The authors gratefully acknowledge the support from Oklahoma Center for the Advancement of Science & Technology (OCAST) grant HR15-016 and National Institutes of Health (NIH) grant R01 CA197150. This work was also partially sponsored by SCC research award from Stephenson Cancer Center at the University of Oklahoma Health Sciences Center (OUHSC).

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchen Qiu.

Additional information

Associate Editor Mona Kamal Marei oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3049 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Zhang, R., Zargari, A. et al. Classification of Tumor Epithelium and Stroma by Exploiting Image Features Learned by Deep Convolutional Neural Networks. Ann Biomed Eng 46, 1988–1999 (2018). https://doi.org/10.1007/s10439-018-2095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2095-6

Keywords

Navigation