Skip to main content
Log in

Tumor promoting effects of glucagon receptor: a promising biomarker of papillary thyroid carcinoma via regulating EMT and P38/ERK pathways

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Glucagon is a crucial hormone involved in the maintenance of glucose homeostasis. Large efforts to define the role of glucagon receptor (GCGR) have been continuously made in recent years, but it is still incomplete about its function and mechanism. We performed this study to verify its potential impacts on papillary thyroid carcinoma (PTC) progression. Correlation between GCGR expression and PTC was elaborated using The Cancer Genome Atlas (TCGA) database. The Kaplan–Meier method was used to analyze the connection between GCGR expression and prognosis of PTC patients. GCGR expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis; simultaneously, cell viability was elucidated using cell proliferation and colony formation assays following siRNAs strategy. Transwell analyses were conducted to measure the invasion and migration of PTC cells. Flow cytometry analysis was conducted to examine apoptotic ability. The cAMP ELISA kit was employed to measure the cAMP level in PTC cells. Our data determined that the expression level of GCGR was increased in PTC tissues and cells in contrast to normal tissues and Nthy-ori 3-1, respectively. Up-regulated GCGR expression was linked with the lower survival rate in patients with PTC. Functional analysis in vitro suggested that GCGR knockdown attenuated PTC cell proliferation, colony formation, invasion, and migration whilst intensified apoptosis. Down-regulated GCGR was able to increase cAMP level. Furthermore, reduction of GCGR could result in the inactivation of epithelial–mesenchymal transition (EMT) and P38/ERK pathways. In conclusion, the findings of this study disclosed that GCGR promoted PTC cell behaviors by mediating the EMT and P38/ERK pathways, serving as a potential diagnostic and prognostic biomarker as well as therapeutic target for PTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet (London, England). 2016;388(10061):2783–95. https://doi.org/10.1016/s0140-6736(16)30172-6.

    Article  CAS  Google Scholar 

  2. Gezer E, Selek A, Tarkun I, Canturk Z, Cetinarslan B. Papillary thyroid carcinoma presenting as a primary renal tumor with multiple pulmonary and bone metastases: a case report. J Med Case Rep. 2019;13(1):95. https://doi.org/10.1186/s13256-019-2025-8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhu J, Zhang Q, Jin XY, Cai JB, Chen X, Shi WB, et al. MiR-506 suppresses papillary thyroid carcinoma cell proliferation and metastasis via targeting IL17RD. Eur Rev Med Pharmacol Sci. 2019;23(7):2856–62. https://doi.org/10.26355/eurrev_201904_17563.

    Article  CAS  PubMed  Google Scholar 

  4. Du L, Wang Y, Sun X, Li H, Geng X, Ge M, et al. Thyroid cancer: trends in incidence, mortality and clinical-pathological patterns in Zhejiang Province, Southeast China. BMC Cancer. 2018;18(1):291. https://doi.org/10.1186/s12885-018-4081-7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hay ID, Thompson GB, Grant CS, Bergstralh EJ, Dvorak CE, Gorman CA, et al. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940–1999): temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J Surg. 2002;26(8):879–85. https://doi.org/10.1007/s00268-002-6612-1.

    Article  PubMed  Google Scholar 

  6. Wei ZL, Gao AB, Wang Q, Lou XE, Zhao J, Lu QJ. MicroRNA-221 promotes papillary thyroid carcinoma cell migration and invasion via targeting RECK and regulating epithelial-mesenchymal transition. Oncotargets Ther. 2019;12:2323–33. https://doi.org/10.2147/OTT.S190364.

    Article  CAS  Google Scholar 

  7. Mayo KE, Miller LJ, Bataille D, Dalle S, Goke B, Thorens B, et al. International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol Rev. 2003;55(1):167–94. https://doi.org/10.1124/pr.55.1.6.

    Article  CAS  PubMed  Google Scholar 

  8. Bansal P, Wang Q. Insulin as a physiological modulator of glucagon secretion. Am J Physiol Endocrinol Metab. 2008;295(4):E751–61. https://doi.org/10.1152/ajpendo.90295.2008.

    Article  CAS  PubMed  Google Scholar 

  9. Kobilka BK. G protein coupled receptor structure and activation. Biochem Biophys Acta. 2007;1768(4):794–807. https://doi.org/10.1016/j.bbamem.2006.10.021.

    Article  CAS  PubMed  Google Scholar 

  10. Wang F, Dai CQ, Zhang LR, Bing C, Qin J, Liu YF. Downregulation of Lgr6 inhibits proliferation and invasion and increases apoptosis in human colorectal cancer. Int J Mol Med. 2018;42(1):625–32. https://doi.org/10.3892/ijmm.2018.3633.

    Article  CAS  PubMed  Google Scholar 

  11. Ye R, Pi M, Cox JV, Nishimoto SK, Quarles LD. CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model. J Exp Clin Cancer Res CR. 2017;36(1):90. https://doi.org/10.1186/s13046-017-0561-x.

    Article  CAS  PubMed  Google Scholar 

  12. Demenais F, Mohamdi H, Chaudru V, Goldstein AM, Newton Bishop JA, Bishop DT, et al. Association of MC1R variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study. J Natl Cancer Inst. 2010;102(20):1568–83. https://doi.org/10.1093/jnci/djq363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shang D, Li Z, Zhu Z, Chen H, Zhao L, Wang X, et al. Baicalein suppresses 17-beta-estradiol-induced migration, adhesion and invasion of breast cancer cells via the G protein-coupled receptor 30 signaling pathway. Oncol Rep. 2015;33(4):2077–85. https://doi.org/10.3892/or.2015.3786.

    Article  CAS  PubMed  Google Scholar 

  14. Wei W, Chen ZJ, Zhang KS, Yang XL, Wu YM, Chen XH, et al. The activation of G protein-coupled receptor 30 (GPR30) inhibits proliferation of estrogen receptor-negative breast cancer cells in vitro and in vivo. Cell Death Dis. 2014;5:e1428. https://doi.org/10.1038/cddis.2014.398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kanda R, Hiraike H, Wada-Hiraike O, Ichinose T, Nagasaka K, Sasajima Y, et al. Expression of the glucagon-like peptide-1 receptor and its role in regulating autophagy in endometrial cancer. BMC Cancer. 2018;18(1):657. https://doi.org/10.1186/s12885-018-4570-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang W, Li Y, Zhu JY, Fang D, Ding HF, Dong Z, et al. Triple negative breast cancer development can be selectively suppressed by sustaining an elevated level of cellular cyclic AMP through simultaneously blocking its efflux and decomposition. Oncotarget. 2016;7(52):87232–45. https://doi.org/10.18632/oncotarget.13601.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang DD, Li Y, Xu Y, Kim J, Huang S. Phosphodiesterase 7B/microRNA-200c relationship regulates triple-negative breast cancer cell growth. Oncogene. 2019;38(7):1106–20. https://doi.org/10.1038/s41388-018-0499-2.

    Article  CAS  PubMed  Google Scholar 

  18. Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014;25(5):666–81. https://doi.org/10.1016/j.ccr.2014.03.010.

    Article  CAS  PubMed  Google Scholar 

  19. Du Z, Wang Q, Ma G, Jiao J, Jiang D, Zheng X, et al. Inhibition of Nrf2 promotes the antitumor effect of Pinelliae rhizome in papillary thyroid cancer. J Cell Physiol. 2019;234(8):13867–77. https://doi.org/10.1002/jcp.28069.

    Article  CAS  PubMed  Google Scholar 

  20. Wang N, Li Y, Wei J, Pu J, Liu R, Yang Q, et al. TBX1 functions as a tumor suppressor in thyroid cancer through inhibiting the activities of the PI3K/AKT and MAPK/ERK pathways. Thyroid. 2019;29(3):378–94. https://doi.org/10.1089/thy.2018.0312.

    Article  CAS  PubMed  Google Scholar 

  21. Ferrari SM, Antonelli A, Guidi P, Bernardeschi M, Scarcelli V, Fallahi P, et al. Genotoxicity evaluation of the soybean isoflavone genistein in human papillary thyroid cancer cells. Study of its potential use in thyroid cancer therapy. Nut Cancer. 2019. https://doi.org/10.1080/01635581.2019.1604004.

    Article  Google Scholar 

  22. Okamoto H, Cavino K, Na E, Krumm E, Kim SY, Cheng X, et al. Glucagon receptor inhibition normalizes blood glucose in severe insulin-resistant mice. Proc Natl Acad Sci USA. 2017;114(10):2753–8. https://doi.org/10.1073/pnas.1621069114.

    Article  CAS  PubMed  Google Scholar 

  23. Ben-Zvi D, Barrandon O, Hadley S, Blum B, Peterson QP, Melton DA. Angptl4 links alpha-cell proliferation following glucagon receptor inhibition with adipose tissue triglyceride metabolism. Proc Natl Acad Sci USA. 2015;112(50):15498–503. https://doi.org/10.1073/pnas.1513872112.

    Article  CAS  PubMed  Google Scholar 

  24. Sipos B, Sperveslage J, Anlauf M, Hoffmeister M, Henopp T, Buch S, et al. Glucagon cell hyperplasia and neoplasia with and without glucagon receptor mutations. J Clin Endocrinol Metab. 2015;100(5):E783–8. https://doi.org/10.1210/jc.2014-4405.

    Article  CAS  PubMed  Google Scholar 

  25. Graham GV, Conlon JM, Abdel-Wahab YH, Flatt PR. Glucagon-related peptides from phylogenetically ancient fish reveal new approaches to the development of dual GCGR and GLP1R agonists for type 2 diabetes therapy. Peptides. 2018;110:19–29. https://doi.org/10.1016/j.peptides.2018.10.013.

    Article  CAS  PubMed  Google Scholar 

  26. Wang MY, Yan H, Shi Z, Evans MR, Yu X, Lee Y, et al. Glucagon receptor antibody completely suppresses type 1 diabetes phenotype without insulin by disrupting a novel diabetogenic pathway. Proc Natl Acad Sci USA. 2015;112(8):2503–8. https://doi.org/10.1073/pnas.1424934112.

    Article  CAS  PubMed  Google Scholar 

  27. Luo J, Phillips L, Liu S, Wactawski-Wende J, Margolis KL. Diabetes, diabetes treatment, and risk of thyroid cancer. J Clin Endocrinol Metab. 2016;101(3):1243–8. https://doi.org/10.1210/jc.2015-3901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perros P, McCrimmon RJ, Shaw G, Frier BM. Frequency of thyroid dysfunction in diabetic patients: value of annual screening. Diab Med J Br Diab Assoc. 1995;12(7):622–7.

    Article  CAS  Google Scholar 

  29. Celani MF, Bonati ME, Stucci N. Prevalence of abnormal thyrotropin concentrations measured by a sensitive assay in patients with type 2 diabetes mellitus. Diabetes research (Edinburgh, Scotland). 1994;27(1):15–25.

    CAS  Google Scholar 

  30. Kim T, Nason S, Holleman C, Pepin M, Wilson L, Berryhill TF, et al. Glucagon receptor signaling regulates energy metabolism via hepatic farnesoid X receptor and fibroblast growth factor. Diabetes. 2018;67(9):1773–82. https://doi.org/10.2337/db17-1502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ali S, Ussher JR, Baggio LL, Kabir MG, Charron MJ, Ilkayeva O, et al. Cardiomyocyte glucagon receptor signaling modulates outcomes in mice with experimental myocardial infarction. Mol Metab. 2015;4(2):132–43. https://doi.org/10.1016/j.molmet.2014.11.005.

    Article  CAS  PubMed  Google Scholar 

  32. Karwi QG, Zhang L, Wagg CS, Wang W, Ghandi M, Thai D, et al. Targeting the glucagon receptor improves cardiac function and enhances insulin sensitivity following a myocardial infarction. Cardiovasc Diabetol. 2019;18(1):1. https://doi.org/10.1186/s12933-019-0806-4.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sinclair EM, Yusta B, Streutker C, Baggio LL, Koehler J, Charron MJ, et al. Glucagon receptor signaling is essential for control of murine hepatocyte survival. Gastroenterology. 2008;135(6):2096–106. https://doi.org/10.1053/j.gastro.2008.07.075.

    Article  CAS  PubMed  Google Scholar 

  34. Naviglio S, Di Gesto D, Illiano F, Chiosi E, Giordano A, Illiano G, et al. Leptin potentiates antiproliferative action of cAMP elevation via protein kinase A down-regulation in breast cancer cells. J Cell Physiol. 2010;225(3):801–9. https://doi.org/10.1002/jcp.22288.

    Article  CAS  PubMed  Google Scholar 

  35. Ye X, Brabletz T, Kang Y, Longmore GD, Nieto MA, Stanger BZ, et al. Upholding a role for EMT in breast cancer metastasis. Nature. 2017;547(7661):e1–3. https://doi.org/10.1038/nature22816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Luo X, Qiu Y, Jiang Y, Chen F, Jiang L, Zhou Y, et al. Long non-coding RNA implicated in the invasion and metastasis of head and neck cancer: possible function and mechanisms. Mol Cancer. 2018;17(1):14. https://doi.org/10.1186/s12943-018-0763-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med. 2018;12(4):361–73. https://doi.org/10.1007/s11684-018-0656-6.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cho JH, Hong WG, Jung YJ, Lee J, Lee E, Hwang SG, et al. Gamma-Ionizing radiation-induced activation of the EGFR-p38/ERK-STAT3/CREB-1-EMT pathway promotes the migration/invasion of non-small cell lung cancer cells and is inhibited by podophyllotoxin acetate. Tumour Biol J Int Soc Oncodev Biol Med. 2016;37(6):7315–25. https://doi.org/10.1007/s13277-015-4548-y.

    Article  CAS  Google Scholar 

  39. Lei YY, Wang WJ, Mei JH, Wang CL. Mitogen-activated protein kinase signal transduction in solid tumors. Asian Pac J Cancer Prev APJCP. 2014;15(20):8539–48.

    Article  Google Scholar 

  40. Zhang G, He J, Ye X, Zhu J, Hu X, Shen M, et al. beta-Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS-mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma. Cell Death Dis. 2019;10(4):255. https://doi.org/10.1038/s41419-019-1492-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Yu L, Wang T. MicroRNA-374b inhibits the tumor growth and promotes apoptosis in non-small cell lung cancer tissue through the p38/ERK signaling pathway by targeting JAM-2. J Thorac Dis. 2018;10(9):5489–98. https://doi.org/10.21037/jtd.2018.09.93.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li GC, Cao XY, Li YN, Qiu YY, Li YN, Liu XJ, et al. MicroRNA-374b inhibits cervical cancer cell proliferation and induces apoptosis through the p38/ERK signaling pathway by binding to JAM-2. J Cell Physiol. 2018;233(9):7379–90. https://doi.org/10.1002/jcp.26574.

    Article  CAS  PubMed  Google Scholar 

  43. Tang G, Du R, Tang Z, Kuang Y. MiRNALet-7a mediates prostate cancer PC-3 cell invasion, migration by inducing epithelial-mesenchymal transition through CCR43/MAPK pathway. J Cell Biochem. 2018;119(4):3725–31. https://doi.org/10.1002/jcb.26595.

    Article  CAS  PubMed  Google Scholar 

  44. Song B, Li R, Zuo Z, Tan J, Liu L, Ding D, et al. LncRNA ENST00000539653 acts as an oncogenic factor via MAPK signalling in papillary thyroid cancer. BMC Cancer. 2019;19(1):297. https://doi.org/10.1186/s12885-019-5533-4.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu F, Yin R, Chen X, Chen W, Qian Y, Zhao Y, et al. Over-expression of miR-206 decreases the Euthyrox-resistance by targeting MAP4K3 in papillary thyroid carcinoma. Biomed Pharmacother. 2019;114:108605. https://doi.org/10.1016/j.biopha.2019.108605.

    Article  CAS  PubMed  Google Scholar 

  46. Fuziwara CS, Saito KC, Leoni SG, Waitzberg AFL, Kimura ET. The highly expressed FAM83F protein in papillary thyroid cancer exerts a pro-oncogenic role in thyroid follicular cells. Front Endocrinol. 2019;10:134. https://doi.org/10.3389/fendo.2019.00134.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Wen Nie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, HC., Chen, XR., Sun, HF. et al. Tumor promoting effects of glucagon receptor: a promising biomarker of papillary thyroid carcinoma via regulating EMT and P38/ERK pathways. Human Cell 33, 175–184 (2020). https://doi.org/10.1007/s13577-019-00284-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-019-00284-y

Keywords

Navigation