Skip to main content

Advertisement

Log in

The Brain-Derived Neurotrophic Factor: Missing Link Between Sleep Deprivation, Insomnia, and Depression

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The brain-derived neurotrophic factor (BDNF) mediates the plasticity-related changes that associate with memory processing during sleep. Sleep deprivation and chronic stress are associated with propensity to depression, anxiety, and insomnia. We propose a model by which explain alterations in the CNS and serum expression of BDNF associated with chronic sleep deprivation, depression, and insomnia. Mild sleep deprivation activates the cerebral cortex and brainstem to generate the physiologic drive for non-rapid eye movement (NREM) and rapid eye movement (REM) sleep drive respectively, associated with BDNF upregulation in these regions. This physiological response loses effectiveness with longer episodes or during chronic of total or selective REM sleep loss, which are associated with impaired hippocampal BDNF expression, impaired memory and cognition. Chronic sleep deprivation and insomnia can act as an external stressors and result in depression, characterized by hippocampal BDNF downregulation along with disrupted frontal cortical BDNF expression, as well as reduced levels and impaired diurnal alterations in serum BDNF expression. Acute REM sleep deprivation breaks the cycle by restoration of hippocampal, and possibly restoration of cortical and serum expression of BDNF. The BDNF Val66Met polymorphism alters susceptibility to depression, anxiety, and insomnia by altering availability and expression of BDNF in brain and blood. The proposed model is testable and implies that low levels and low variability in serum BDNF are associated with poor response to anti-depressive medications, electroconvulsive therapy, and REM sleep deprivation, in patients with depression. Our mode is also backed up by the existing clinical evidence but is yet to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jackson ML, Gunzelmann G, Whitney P, Hinson JM, Belenky G, Rabat A et al (2013) Deconstructing and reconstructing cognitive performance in sleep deprivation. Sleep Med Rev 17(3):215–225. https://doi.org/10.1016/j.smrv.2012.06.007

    Article  PubMed  Google Scholar 

  2. Fullagar HH, Skorski S, Duffield R, Hammes D, Coutts AJ, Meyer T (2015) Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med (Auckl NZ) 45(2):161–186. https://doi.org/10.1007/s40279-014-0260-0

    Article  Google Scholar 

  3. Abel T, Havekes R, Saletin JM, Walker MP (2013) Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol 23(17):R774–R788. https://doi.org/10.1016/j.cub.2013.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Havekes R, Vecsey CG, Abel T (2012) The impact of sleep deprivation on neuronal and glial signalling pathways important for memory and synaptic plasticity. Cell Signal 24(6):1251–1260. https://doi.org/10.1016/j.cellsig.2012.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang H, Liu Y, Briesemann M, Yan J (2010) Computational analysis of gene regulation in animal sleep deprivation. Physiol Genomics 42(3):427–436. https://doi.org/10.1152/physiolgenomics.00205.2009

    Article  CAS  PubMed  Google Scholar 

  6. Duncan WC, Sarasso S, Ferrarelli F, Selter J, Riedner BA, Hejazi NS et al (2013) Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. Int J Neuropsychopharmacol 16(2):301–311. https://doi.org/10.1017/s1461145712000545

    Article  CAS  PubMed  Google Scholar 

  7. Davis CJ, Clinton JM, Jewett KA, Zielinski MR, Krueger JM (2011) Delta wave power: an independent sleep phenotype or epiphenomenon? J Clin Sleep Med Off Publ Am Acad Sleep Med 7(5 Suppl):S16–S18. https://doi.org/10.5664/jcsm.1346

    Article  Google Scholar 

  8. Datta S, Knapp CM, Koul-Tiwari R, Barnes A (2015) The homeostatic regulation of REM sleep: a role for localized expression of brain-derived neurotrophic factor in the brainstem. Behav Brain Res 292:381–392. https://doi.org/10.1016/j.bbr.2015.06.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ackermann S, Rasch B (2014) Differential effects of non-REM and REM sleep on memory consolidation? Curr Neurol Neurosci Rep 14(2):430. https://doi.org/10.1007/s11910-013-0430-8

    Article  PubMed  Google Scholar 

  10. Hunter AS (2018) REM deprivation but not sleep fragmentation produces a sex-specific impairment in extinction. Physiol Behav 196:84–94. https://doi.org/10.1016/j.physbeh.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  11. Boutin A, Pinsard B, Bore A, Carrier J, Fogel SM, Doyon J (2018) Transient synchronization of hippocampo-striato-thalamo-cortical networks during sleep spindle oscillations induces motor memory consolidation. NeuroImage 169:419–430. https://doi.org/10.1016/j.neuroimage.2017.12.066

    Article  PubMed  Google Scholar 

  12. Jahnke S, Timme M, Memmesheimer RM (2015) A unified dynamic model for learning, replay, and sharp-wave/ripples. J Neurosci Off J Soc Neurosci 35(49):16236–16258. https://doi.org/10.1523/jneurosci.3977-14.2015

    Article  CAS  Google Scholar 

  13. Almeida-Filho DG, Queiroz CM, Ribeiro S (2018) Memory corticalization triggered by REM sleep: mechanisms of cellular and systems consolidation. Cell Mol Life Sci. https://doi.org/10.1007/s00018-018-2886-9

    Article  PubMed  Google Scholar 

  14. Yan X, Liu J, Ye Z, Huang J, He F, Xiao W et al (2016) CaMKII-mediated CREB phosphorylation is involved in Ca2+-induced BDNF mRNA transcription and neurite outgrowth promoted by electrical stimulation. PLoS ONE 11(9):e0162784. https://doi.org/10.1371/journal.pone.0162784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morgenthaler J, Wiesner CD, Hinze K, Abels LC, Prehn-Kristensen A, Goder R (2014) Selective REM-sleep deprivation does not diminish emotional memory consolidation in young healthy subjects. PLoS ONE 9(2):e89849. https://doi.org/10.1371/journal.pone.0089849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rihm JS, Rasch B (2015) Replay of conditioned stimuli during late REM and stage N2 sleep influences affective tone rather than emotional memory strength. Neurobiol Learn Mem 122:142–151. https://doi.org/10.1016/j.nlm.2015.04.008

    Article  PubMed  Google Scholar 

  17. Landmann N, Kuhn M, Maier JG, Spiegelhalder K, Baglioni C, Frase L et al (2015) REM sleep and memory reorganization: potential relevance for psychiatry and psychotherapy. Neurobiol Learn Mem 122:28–40. https://doi.org/10.1016/j.nlm.2015.01.004

    Article  PubMed  Google Scholar 

  18. Ognjanovski N, Broussard C, Zochowski M, Aton SJ (2018) Hippocampal network oscillations rescue memory consolidation deficits caused by sleep loss. Cerebral cortex (New York NY 1991). https://doi.org/10.1093/cercor/bhy174

    Article  Google Scholar 

  19. Bastien CH (2011) Insomnia: neurophysiological and neuropsychological approaches. Neuropsychol Rev 21(1):22–40. https://doi.org/10.1007/s11065-011-9160-3

    Article  PubMed  Google Scholar 

  20. Rosenberg RP, Hull SG, Lankford DA, Mayleben DW, Seiden DJ, Furey SA et al (2014) A randomized, double-blind, single-dose, placebo-controlled, multicenter, polysomnographic study of gabapentin in transient insomnia induced by sleep phase advance. J Clin Sleep Med Off Publ Am Acad Sleep Med 10(10):1093–1100. https://doi.org/10.5664/jcsm.4108

    Article  Google Scholar 

  21. Wu YM, Pietrone R, Cashmere JD, Begley A, Miewald JM, Germain A et al (2013) EEG power during waking and NREM sleep in primary insomnia. J Clin Sleep Med Off Publ Am Acad Sleep Med 9(10):1031–1037. https://doi.org/10.5664/jcsm.3076

    Article  Google Scholar 

  22. St-Jean G, Turcotte I, Perusse AD, Bastien CH (2013) REM and NREM power spectral analysis on two consecutive nights in psychophysiological and paradoxical insomnia sufferers. Int J Psychophysiol Off J Int Organ Psychophysiol 89(2):181–194. https://doi.org/10.1016/j.ijpsycho.2013.06.004

    Article  Google Scholar 

  23. Buysse DJ (2013) Insomnia. JAMA 309(7):706–716. https://doi.org/10.1001/jama.2013.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Monti JM, Alvarino F, Monti D (2000) Conventional and power spectrum analysis of the effects of zolpidem on sleep EEG in patients with chronic primary insomnia. Sleep 23(8):1075–1084

    Article  CAS  Google Scholar 

  25. Bastien CH, LeBlanc M, Carrier J, Morin CM (2003) Sleep EEG power spectra, insomnia, and chronic use of benzodiazepines. Sleep 26(3):313–317

    Article  Google Scholar 

  26. Dijk DJ, James LM, Peters S, Walsh JK, Deacon S (2010) Sex differences and the effect of gaboxadol and zolpidem on EEG power spectra in NREM and REM sleep. J Psychopharmacol (Oxf Engl) 24(11):1613–1618. https://doi.org/10.1177/0269881109105788

    Article  CAS  Google Scholar 

  27. Buysse DJ, Angst J, Gamma A, Ajdacic V, Eich D, Rössler W (2008) Prevalence, course, and comorbidity of insomnia and depression in young adults. Sleep 31(4):473–480

    Article  Google Scholar 

  28. Baglioni C, Battagliese G, Feige B, Spiegelhalder K, Nissen C, Voderholzer U et al (2011) Insomnia as a predictor of depression: a meta-analytic evaluation of longitudinal epidemiological studies. J Affect Disord 135(1–3):10–19. https://doi.org/10.1016/j.jad.2011.01.011

    Article  PubMed  Google Scholar 

  29. Staner L (2010) Comorbidity of insomnia and depression. Sleep Med Rev 14(1):35–46. https://doi.org/10.1016/j.smrv.2009.09.003

    Article  PubMed  Google Scholar 

  30. Luik AI, Bostock S, Chisnall L, Kyle SD, Lidbetter N, Baldwin N et al (2017) Treating depression and anxiety with digital cognitive behavioural therapy for insomnia: a real world NHS evaluation using standardized outcome measures. Behav Cogn Psychother 45(1):91–96. https://doi.org/10.1017/s1352465816000369

    Article  PubMed  Google Scholar 

  31. Mason EC, Harvey AG (2014) Insomnia before and after treatment for anxiety and depression. J Affect Disord 168:415–421. https://doi.org/10.1016/j.jad.2014.07.020

    Article  PubMed  Google Scholar 

  32. Li SX, Chan NY, Man Yu MW, Lam SP, Zhang J, Yan Chan JW et al (2018) Eveningness chronotype, insomnia symptoms, and emotional and behavioural problems in adolescents. Sleep Med 47:93–99. https://doi.org/10.1016/j.sleep.2018.03.025

    Article  CAS  PubMed  Google Scholar 

  33. Dunmyre JR, Mashour GA, Booth V (2014) Coupled flip-flop model for REM sleep regulation in the rat. PLoS ONE 9(4):e94481. https://doi.org/10.1371/journal.pone.0094481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weber F, Chung S, Beier KT, Xu M, Luo L, Dan Y (2015) Control of REM sleep by ventral medulla GABAergic neurons. Nature 526(7573):435–438. https://doi.org/10.1038/nature14979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang C

  36. Wang YQ (2015) The neurobiological mechanisms and treatments of REM sleep disturbances in depression. 13(4):543–353. https://doi.org/10.2174/1570159x13666150310002540

  37. Lu Y, Ren Q, Zong L, Wu Y, Zhang Q, Ma X et al (2014) Effects of sleep deprivation on polysomnography and executive function in patients with depression. Chin Med J 127(18):3229–3232

    Article  Google Scholar 

  38. Marzano C, De Simoni E, Tempesta D, Ferrara M, De Gennaro L (2011) Sleep deprivation suppresses the increase of rapid eye movement density across sleep cycles. J Sleep Res 20(3):386–394. https://doi.org/10.1111/j.1365-2869.2010.00886.x

    Article  PubMed  Google Scholar 

  39. Kurczewska E, Ferensztajn-Rochowiak E, Jasinska-Mikolajczyk A, Chlopocka-Wozniak M, Rybakowski JK (2018) Augmentation of pharmacotherapy by sleep deprivation with sleep phase advance in treatment-resistant depression. Pharmacopsychiatry. https://doi.org/10.1055/a-0695-9138

    Article  PubMed  Google Scholar 

  40. Vigers AJ, Amin DS, Talley-Farnham T, Gorski JA, Xu B, Jones KR (2012) Sustained expression of brain-derived neurotrophic factor is required for maintenance of dendritic spines and normal behavior. Neuroscience 212:1–18. https://doi.org/10.1016/j.neuroscience.2012.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Foltran RB, Diaz SL (2016) BDNF isoforms: a round trip ticket between neurogenesis and serotonin? J Neurochem 138(2):204–221. https://doi.org/10.1111/jnc.13658

    Article  CAS  PubMed  Google Scholar 

  42. Teixeira AL, Barbosa IG, Diniz BS, Kummer A (2010) Circulating levels of brain-derived neurotrophic factor: correlation with mood, cognition and motor function. Biomark Med 4(6):871–887. https://doi.org/10.2217/bmm.10.111

    Article  CAS  PubMed  Google Scholar 

  43. Quesseveur G, David DJ, Gaillard MC, Pla P, Wu MV, Nguyen HT et al (2013) BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl Psychiatry 3:e253. https://doi.org/10.1038/tp.2013.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Karege F, Schwald M, Cisse M (2002) Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 328(3):261–264

    Article  CAS  Google Scholar 

  45. de Assis GG, de Almondes KM (2017) Exercise-dependent BDNF as a modulatory factor for the executive processing of individuals in course of cognitive decline. A systematic review. Front Psychol 8:584. https://doi.org/10.3389/fpsyg.2017.00584

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jezierski MK, Sohrabji F (2003) Estrogen enhances retrograde transport of brain-derived neurotrophic factor in the rodent forebrain. Endocrinology 144(11):5022–5029. https://doi.org/10.1210/en.2003-0724

    Article  CAS  PubMed  Google Scholar 

  47. Larson TA (2018) Sex steroids, adult neurogenesis, and inflammation in CNS homeostasis, degeneration, and repair. Front Endocrinol 9:205. https://doi.org/10.3389/fendo.2018.00205

    Article  Google Scholar 

  48. Lima Giacobbo B, Doorduin J, Klein HC, Dierckx R, Bromberg E, de Vries EFJ (2018) Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1283-6

    Article  PubMed  PubMed Central  Google Scholar 

  49. Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64(2):238–258. https://doi.org/10.1124/pr.111.005108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M et al (2011) Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol 14(3):347–353. https://doi.org/10.1017/s1461145710000738

    Article  CAS  PubMed  Google Scholar 

  51. Kishi T, Yoshimura R, Ikuta T, Iwata N (2017) Brain-derived neurotrophic factor and major depressive disorder: evidence from meta-analyses. Front Psychiatry. https://doi.org/10.3389/fpsyt.2017.00308

    Article  PubMed  Google Scholar 

  52. Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML (2015) BDNF as a biomarker for successful treatment of mood disorders: a systematic and quantitative meta-analysis. J Affect Disord 174:432–440. https://doi.org/10.1016/j.jad.2014.11.044

    Article  CAS  PubMed  Google Scholar 

  53. Deuschle M, Schredl M, Wisch C, Schilling C, Gilles M, Geisel O et al (2018) Serum brain-derived neurotrophic factor (BDNF) in sleep-disordered patients: relation to sleep stage N3 and rapid eye movement (REM) sleep across diagnostic entities. J Sleep Res 27(1):73–77. https://doi.org/10.1111/jsr.12577

    Article  PubMed  Google Scholar 

  54. Fan TT, Chen WH, Shi L, Lin X, Tabarak S, Chen SJ et al (2019) Objective sleep duration is associated with cognitive deficits in primary insomnia: BDNF may play a role. Sleep. https://doi.org/10.1093/sleep/zsy192

    Article  PubMed  Google Scholar 

  55. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112(2):257–269. https://doi.org/10.1016/s0092-8674(03)00035-7

    Article  CAS  PubMed  Google Scholar 

  56. Hempstead BL (2015) Brain-derived neurotrophic factor: three ligands, many actions. Trans Am Clin Climatol Assoc 126:9–19

    PubMed  PubMed Central  Google Scholar 

  57. Harrisberger F, Smieskova R, Schmidt A, Lenz C, Walter A, Wittfeld K et al (2015) BDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: a systematic review and meta-analysis. Neurosci Biobehav Rev 55:107–118. https://doi.org/10.1016/j.neubiorev.2015.04.017

    Article  CAS  PubMed  Google Scholar 

  58. Grant LK, Cain SW, Chang AM, Saxena R, Czeisler CA, Anderson C (2018) Impaired cognitive flexibility during sleep deprivation among carriers of the Brain Derived Neurotrophic Factor (BDNF) Val66Met allele. Behav Brain Res 338:51–55. https://doi.org/10.1016/j.bbr.2017.09.025

    Article  CAS  PubMed  Google Scholar 

  59. Mascetti L, Foret A, Schrouff J, Muto V, Dideberg V, Balteau E et al (2013) Concurrent synaptic and systems memory consolidation during sleep. J Neurosci Off J Soc Neurosci 33(24):10182–10190. https://doi.org/10.1523/jneurosci.0284-13.2013

    Article  CAS  Google Scholar 

  60. Harrington MO, Klaus K, Vaht M, Harro J, Pennington K, Durrant SJ (2019) Overnight retention of emotional memories is influenced by BDNF Val66Met but not 5-HTTLPR. Behav Brain Res 359:17–27. https://doi.org/10.1016/j.bbr.2018.10.015

    Article  CAS  PubMed  Google Scholar 

  61. Halonen R, Kuula L, Lahti J, Makkonen T, Raikkonen K, Pesonen AK (2019) BDNF Val66Met polymorphism moderates the association between sleep spindles and overnight visual recognition. Behav Brain Res 375:112157. https://doi.org/10.1016/j.bbr.2019.112157

    Article  CAS  PubMed  Google Scholar 

  62. Pei Y, Smith AK, Wang Y, Pan Y, Yang J, Chen Q et al (2012) The brain-derived neurotrophic-factor (BDNF) val66met polymorphism is associated with geriatric depression: a meta-analysis. Am J Med Genet B 159b(5):560–566. https://doi.org/10.1002/ajmg.b.32062

    Article  CAS  Google Scholar 

  63. Verhagen M, van der Meij A, van Deurzen PA, Janzing JG, Arias-Vasquez A, Buitelaar JK et al (2010) Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Mol Psychiatry 15(3):260–271. https://doi.org/10.1038/mp.2008.109

    Article  CAS  PubMed  Google Scholar 

  64. Tucker AM, Dinges DF, Van Dongen HP (2007) Trait interindividual differences in the sleep physiology of healthy young adults. J Sleep Res 16(2):170–180. https://doi.org/10.1111/j.1365-2869.2007.00594.x

    Article  PubMed  Google Scholar 

  65. Landolt HP (2011) Genetic determination of sleep EEG profiles in healthy humans. Prog Brain Res 193:51–61. https://doi.org/10.1016/b978-0-444-53839-0.00004-1

    Article  PubMed  Google Scholar 

  66. Bachmann V, Klein C, Bodenmann S, Schafer N, Berger W, Brugger P et al (2012) The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep 35(3):335–344. https://doi.org/10.5665/sleep.1690

    Article  PubMed  PubMed Central  Google Scholar 

  67. Guindalini C, Mazzotti DR, Castro LS, D’Aurea CV, Andersen ML, Poyares D et al (2014) Brain-derived neurotrophic factor gene polymorphism predicts interindividual variation in the sleep electroencephalogram. J Neurosci Res 92(8):1018–1023. https://doi.org/10.1002/jnr.23380

    Article  CAS  PubMed  Google Scholar 

  68. Panja D, Bramham CR (2014) BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology 76 Pt C:664–676. https://doi.org/10.1016/j.neuropharm.2013.06.024

    Article  CAS  PubMed  Google Scholar 

  69. Cirelli C, Tononi G (2000) Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. J Neurosci Off J Soc Neurosci 20(24):9187–9194

    Article  CAS  Google Scholar 

  70. Ventskovska O, Porkka-Heiskanen T, Karpova NN (2015) Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats. J Sleep Res 24(2):124–130. https://doi.org/10.1111/jsr.12242

    Article  PubMed  Google Scholar 

  71. Martinowich K, Schloesser RJ, Jimenez DV, Weinberger DR, Lu B (2011) Activity-dependent brain-derived neurotrophic factor expression regulates cortistatin-interneurons and sleep behavior. Mol Brain 4:11. https://doi.org/10.1186/1756-6606-4-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Faraguna U, Vyazovskiy VV, Nelson AB, Tononi G, Cirelli C (2008) A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci Off J Soc Neurosci 28(15):4088–4095. https://doi.org/10.1523/jneurosci.5510-07.2008

    Article  CAS  Google Scholar 

  73. Kushikata T, Fang J, Krueger JM (1999) Brain-derived neurotrophic factor enhances spontaneous sleep in rats and rabbits. Am J Physiol 276(5 Pt 2):R1334–R1338

    CAS  PubMed  Google Scholar 

  74. Seibt J, Dumoulin MC, Aton SJ, Coleman T, Watson A, Naidoo N et al (2012) Protein synthesis during sleep consolidates cortical plasticity in vivo. Curr Biol 22(8):676–682. https://doi.org/10.1016/j.cub.2012.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zagaar M, Dao A, Alhaider I, Alkadhi K (2013) Regular treadmill exercise prevents sleep deprivation-induced disruption of synaptic plasticity and associated signaling cascade in the dentate gyrus. Mol Cell Neurosci 56:375–383. https://doi.org/10.1016/j.mcn.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  76. Zagaar MA, Dao AT, Alhaider IA, Alkadhi KA (2016) Prevention by regular exercise of acute sleep deprivation-induced impairment of late phase LTP and related signaling molecules in the dentate gyrus. Mol Neurobiol 53(5):2900–2910. https://doi.org/10.1007/s12035-015-9176-4

    Article  CAS  PubMed  Google Scholar 

  77. Alkadhi KA, Alhaider IA (2016) Caffeine and REM sleep deprivation: effect on basal levels of signaling molecules in area CA1. Mol Cell Neurosci 71:125–131. https://doi.org/10.1016/j.mcn.2015.12.015

    Article  CAS  PubMed  Google Scholar 

  78. Alhaider IA, Aleisa AM, Tran TT, Alkadhi KA (2011) Sleep deprivation prevents stimulation-induced increases of levels of P-CREB and BDNF: protection by caffeine. Mol Cell Neurosci 46(4):742–751. https://doi.org/10.1016/j.mcn.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  79. Duan R, Liu X, Wang T, Wu L, Gao X, Zhang Z (2016) Histone acetylation regulation in sleep deprivation-induced spatial memory impairment. Neurochem Res 41(9):2223–2232. https://doi.org/10.1007/s11064-016-1937-6

    Article  CAS  PubMed  Google Scholar 

  80. Hajali V, Sheibani V, Ghazvini H, Ghadiri T, Valizadeh T, Saadati H et al (2015) Effect of castration on the susceptibility of male rats to the sleep deprivation-induced impairment of behavioral and synaptic plasticity. Neurobiol Learn Mem 123:140–148. https://doi.org/10.1016/j.nlm.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  81. Karabulut S, Korkmaz Bayramov K, Bayramov R, Ozdemir F, Topaloglu T, Ergen E et al (2019) Effects of post-learning REM sleep deprivation on hippocampal plasticity-related genes and microRNA in mice. Behav Brain Res 361:7–13. https://doi.org/10.1016/j.bbr.2018.12.045

    Article  CAS  PubMed  Google Scholar 

  82. Alhaider IA, Aleisa AM, Tran TT, Alkadhi KA (2010) Caffeine prevents sleep loss-induced deficits in long-term potentiation and related signaling molecules in the dentate gyrus. Eur J Neurosci 31(8):1368–1376. https://doi.org/10.1111/j.1460-9568.2010.07175.x

    Article  PubMed  Google Scholar 

  83. Alhaider IA, Alkadhi KA (2015) Caffeine treatment prevents rapid eye movement sleep deprivation-induced impairment of late-phase long-term potentiation in the dentate gyrus. Eur J Neurosci 42(10):2843–2850. https://doi.org/10.1111/ejn.13092

    Article  PubMed  Google Scholar 

  84. Sahu S, Kauser H, Ray K, Kishore K, Kumar S, Panjwani U (2013) Caffeine and modafinil promote adult neuronal cell proliferation during 48 h of total sleep deprivation in rat dentate gyrus. Exp Neurol 248:470–481. https://doi.org/10.1016/j.expneurol.2013.07.021

    Article  CAS  PubMed  Google Scholar 

  85. Zhang L, Zhang HQ, Liang XY, Zhang HF, Zhang T, Liu FE (2013) Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: role of oxidative stress, BDNF and CaMKII. Behav Brain Res 256:72–81. https://doi.org/10.1016/j.bbr.2013.07.051

    Article  CAS  PubMed  Google Scholar 

  86. Zagaar MA, Dao AT, Alhaider IA, Alkadhi KA (2018) Correction to: prevention by regular exercise of acute sleep deprivation-induced impairment of late phase LTP and related signaling molecules in the dentate gyrus. Mol Neurobiol 55(1):902. https://doi.org/10.1007/s12035-017-0789-7

    Article  CAS  PubMed  Google Scholar 

  87. Saadati H, Sheibani V, Esmaeili-Mahani S, Darvishzadeh-Mahani F, Mazhari S (2014) Prior regular exercise reverses the decreased effects of sleep deprivation on brain-derived neurotrophic factor levels in the hippocampus of ovariectomized female rats. Regul Pept 194–195:11–15. https://doi.org/10.1016/j.regpep.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  88. Taishi P, Sanchez C, Wang Y, Fang J, Harding JW, Krueger JM (2001) Conditions that affect sleep alter the expression of molecules associated with synaptic plasticity. Am J Physiol Regul Integr Comp Physiol 281(3):R839–R845. https://doi.org/10.1152/ajpregu.2001.281.3.r839

    Article  CAS  PubMed  Google Scholar 

  89. Hairston IS, Peyron C, Denning DP, Ruby NF, Flores J, Sapolsky RM et al (2004) Sleep deprivation effects on growth factor expression in neonatal rats: a potential role for BDNF in the mediation of delta power. J Neurophysiol 91(4):1586–1595. https://doi.org/10.1152/jn.00894.2003

    Article  CAS  PubMed  Google Scholar 

  90. Zielinski MR, Kim Y, Karpova SA, McCarley RW, Strecker RE, Gerashchenko D (2014) Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neurosci Lett 580:27–31. https://doi.org/10.1016/j.neulet.2014.07.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wallingford JK, Deurveilher S, Currie RW, Fawcett JP, Semba K (2014) Increases in mature brain-derived neurotrophic factor protein in the frontal cortex and basal forebrain during chronic sleep restriction in rats: possible role in initiating allostatic adaptation. Neuroscience 277:174–183. https://doi.org/10.1016/j.neuroscience.2014.06.067

    Article  CAS  PubMed  Google Scholar 

  92. Zielinski MR, Davis JM, Fadel JR, Youngstedt SD (2013) Influence of chronic moderate sleep restriction and exercise training on anxiety, spatial memory, and associated neurobiological measures in mice. Behav Brain Res 250:74–80. https://doi.org/10.1016/j.bbr.2013.04.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kao HT, Ryoo K, Lin A, Janoschka SR, Augustine GJ, Porton B (2017) Synapsins regulate brain-derived neurotrophic factor-mediated synaptic potentiation and axon elongation by acting on membrane rafts. Eur J Neurosci 45(8):1085–1101. https://doi.org/10.1111/ejn.13552

    Article  PubMed  PubMed Central  Google Scholar 

  94. Guzman-Marin R, Ying Z, Suntsova N, Methippara M, Bashir T, Szymusiak R et al (2006) Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats. J Physiol 575(Pt 3):807–819. https://doi.org/10.1113/jphysiol.2006.115287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mohammadipoor-Ghasemabad L, Sangtarash MH, Sheibani V, Sasan HA, Esmaeili-Mahani S (2019) Hippocampal microRNA-191a-5p regulates BDNF expression and shows correlation with cognitive impairment induced by paradoxical sleep deprivation. Neuroscience 414:49–59. https://doi.org/10.1016/j.neuroscience.2019.06.037

    Article  CAS  PubMed  Google Scholar 

  96. Sei H, Saitoh D, Yamamoto K, Morita K, Morita Y (2000) Differential effect of short-term REM sleep deprivation on NGF and BDNF protein levels in the rat brain. Brain Res 877(2):387–390

    Article  CAS  Google Scholar 

  97. Wong LW, Tann JY, Ibanez CF, Sajikumar S (2019) The p75 neurotrophin receptor is an essential mediator of impairments in hippocampal-dependent associative plasticity and memory induced by sleep deprivation. J Neurosci 39(28):5452–5465. https://doi.org/10.1523/jneurosci.2876-18.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Barnes AK, Koul-Tiwari R, Garner JM, Geist PA, Datta S (2017) Activation of brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling in the pedunculopontine tegmental nucleus: a novel mechanism for the homeostatic regulation of rapid eye movement sleep. J Neurochem 141(1):111–123. https://doi.org/10.1111/jnc.13938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fujihara H, Sei H, Morita Y, Ueta Y, Morita K (2003) Short-term sleep disturbance enhances brain-derived neurotrophic factor gene expression in rat hippocampus by acting as internal stressor. J Mol Neurosci 21(3):223–232

    Article  CAS  Google Scholar 

  100. Jiang Y, Zhu J (2015) Effects of sleep deprivation on behaviors and abnormal hippocampal BDNF/miR-10B expression in rats with chronic stress depression. Int J Clin Exp Pathol 8(1):586–593

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Guo L, Guo Z, Luo X, Liang R, Yang S, Ren H et al (2016) Phosphodiesterase 10A inhibition attenuates sleep deprivation-induced deficits in long-term fear memory. Neurosci Lett 635:44–50. https://doi.org/10.1016/j.neulet.2016.10.017

    Article  CAS  PubMed  Google Scholar 

  102. Kishi T, Yoshimura R, Ikuta T, Iwata N (2017) Brain-derived neurotrophic factor and major depressive disorder: evidence from meta-analyses. Front Psychiatry 8:308. https://doi.org/10.3389/fpsyt.2017.00308

    Article  PubMed  Google Scholar 

  103. Dell’Osso L, Del Debbio A, Veltri A, Bianchi C, Roncaglia I, Carlini M et al (2010) Associations between brain-derived neurotrophic factor plasma levels and severity of the illness, recurrence and symptoms in depressed patients. Neuropsychobiology 62(4):207–212. https://doi.org/10.1159/000319946

    Article  CAS  PubMed  Google Scholar 

  104. Gorgulu Y, Caliyurt O (2009) Rapid antidepressant effects of sleep deprivation therapy correlates with serum BDNF changes in major depression. Brain Res Bull 80(3):158–162. https://doi.org/10.1016/j.brainresbull.2009.06.016

    Article  CAS  PubMed  Google Scholar 

  105. Giese M, Beck J, Brand S, Muheim F, Hemmeter U, Hatzinger M et al (2014) Fast BDNF serum level increase and diurnal BDNF oscillations are associated with therapeutic response after partial sleep deprivation. J Psychiatr Res 59:1–7. https://doi.org/10.1016/j.jpsychires.2014.09.005

    Article  PubMed  Google Scholar 

  106. Paumier KL, Sortwell CE, Madhavan L, Terpstra B, Celano SL, Green JJ et al (2015) Chronic amitriptyline treatment attenuates nigrostriatal degeneration and significantly alters trophic support in a rat model of Parkinsonism. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 40(4):874–883. https://doi.org/10.1038/npp.2014.262

    Article  CAS  Google Scholar 

  107. Zhao Q, Cai D, Bai Y (2013) Selegiline rescues gait deficits and the loss of dopaminergic neurons in a subacute MPTP mouse model of Parkinson’s disease. Int J Mol Med 32(4):883–891. https://doi.org/10.3892/ijmm.2013.1450

    Article  CAS  PubMed  Google Scholar 

  108. Krstic J, Buzadzic I, Milanovic SD, Ilic NV, Pajic S, Ilic TV (2014) Low-frequency repetitive transcranial magnetic stimulation in the right prefrontal cortex combined with partial sleep deprivation in treatment-resistant depression: a randomized sham-controlled trial. J ECT 30(4):325–331. https://doi.org/10.1097/yct.0000000000000099

    Article  PubMed  Google Scholar 

  109. Freire TF, Fleck MP, da Rocha NS (2016) Remission of depression following electroconvulsive therapy (ECT) is associated with higher levels of brain-derived neurotrophic factor (BDNF). Brain Res Bull 121:263–269. https://doi.org/10.1016/j.brainresbull.2016.02.013

    Article  CAS  PubMed  Google Scholar 

  110. Molendijk ML, Spinhoven P, Polak M, Bus BA, Penninx BW, Elzinga BM (2014) Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N = 9484). Mol Psychiatry 19(7):791–800. https://doi.org/10.1038/mp.2013.105

    Article  CAS  PubMed  Google Scholar 

  111. Giacobbo BL, Correa MS, Vedovelli K, de Souza CE, Spitza LM, Goncalves L et al (2016) Could BDNF be involved in compensatory mechanisms to maintain cognitive performance despite acute sleep deprivation? An exploratory study. Int J Psychophysiol Off J Int Organ Psychophysiol 99:96–102. https://doi.org/10.1016/j.ijpsycho.2015.11.008

    Article  Google Scholar 

  112. Nishichi R, Nufuji Y, Washio M, Kumagai S (2013) Serum brain-derived neurotrophic factor levels are associated with dyssomnia in females, but not males, among Japanese workers. J Clin Sleep Med Off Publ Am Acad Sleep Med 9(7):649–654. https://doi.org/10.5664/jcsm.2828

    Article  Google Scholar 

  113. Giese M, Unternahrer E, Huttig H, Beck J, Brand S, Calabrese P et al (2014) BDNF: an indicator of insomnia? Mol Psychiatry 19(2):151–152. https://doi.org/10.1038/mp.2013.10

    Article  CAS  PubMed  Google Scholar 

  114. Giese M, Unternaehrer E, Brand S, Calabrese P, Holsboer-Trachsler E, Eckert A (2013) The interplay of stress and sleep impacts BDNF level. PLoS ONE 8(10):e76050. https://doi.org/10.1371/journal.pone.0076050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Aboul-Fotouh S (2015) Behavioral effects of nicotinic antagonist mecamylamine in a rat model of depression: prefrontal cortex level of BDNF protein and monoaminergic neurotransmitters. Psychopharmacology 232(6):1095–1105. https://doi.org/10.1007/s00213-014-3745-5

    Article  CAS  PubMed  Google Scholar 

  116. Lu J, Xu Y, Hu W, Gao Y, Ni X, Sheng H et al (2014) Exercise ameliorates depression-like behavior and increases hippocampal BDNF level in ovariectomized rats. Neurosci Lett 573:13–18. https://doi.org/10.1016/j.neulet.2014.04.053

    Article  CAS  PubMed  Google Scholar 

  117. Chiba S, Numakawa T, Ninomiya M, Richards MC, Wakabayashi C, Kunugi H (2012) Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 39(1):112–119. https://doi.org/10.1016/j.pnpbp.2012.05.018

    Article  CAS  PubMed  Google Scholar 

  118. Lee KS, Alvarenga TA, Guindalini C, Andersen ML, Castro RM, Tufik S (2009) Validation of commonly used reference genes for sleep-related gene expression studies. BMC Mol Biol 10:45. https://doi.org/10.1186/1471-2199-10-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Maturana MJ, Pudell C, Targa AD, Rodrigues LS, Noseda AC, Fortes MH et al (2015) REM sleep deprivation reverses neurochemical and other depressive-like alterations induced by olfactory bulbectomy. Mol Neurobiol 51(1):349–360. https://doi.org/10.1007/s12035-014-8721-x

    Article  CAS  PubMed  Google Scholar 

  120. Ibrahim L, Duncan W, Luckenbaugh DA, Yuan P, Machado-Vieira R, Zarate CA Jr (2011) Rapid antidepressant changes with sleep deprivation in major depressive disorder are associated with changes in vascular endothelial growth factor (VEGF): a pilot study. Brain Res Bull 86(1–2):129–133. https://doi.org/10.1016/j.brainresbull.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei.

Ethics declarations

Conflict of interest

The authors have nothing to disclose. None of the authors received any funding or grant for this study.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, M., Rahmani, F. & Rezaei, N. The Brain-Derived Neurotrophic Factor: Missing Link Between Sleep Deprivation, Insomnia, and Depression. Neurochem Res 45, 221–231 (2020). https://doi.org/10.1007/s11064-019-02914-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02914-1

Keywords

Navigation