Skip to main content
Log in

One-step microchip for DNA fluorescent labeling

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this study, we propose a microchip that is sequentially capable of fluorescently staining and washing DNAs. The main advantage of this microchip is that it allows for one-step preparation of small amounts of solution without degrading microscopic bio-objects such as the DNAs, cells, and biomolecules to be stained. The microchip consists of two inlets, the main channel, staining zone, washing zone, and one outlet, and was processed using a femtosecond laser system. High molecular transport of rhodamine B to deionized water was observed in the performance test of the microchip. Results revealed that the one-step procedure of on-chip DNA staining and washing was excellent compared to the conventional staining method. The one-step preparation of stained and washed DNAs through the microchip will be useful for preparing small volumes of experimental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • L. Schermelleh, R. Heintzmann, H. Leonhardt, A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175 (2010)

    Article  Google Scholar 

  • M. Gao, F. Yu, C. Lv, J. Choo, L. Chen, Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chem. Soc. Rev. 46, 2237–2271 (2017)

    Article  Google Scholar 

  • M. Ratz, I. Testa, S.W. Hell, S. Jakobs, Crispr/cas9-mediated endogenous protein tagging for resolft super-resolution microscopy of living human cells. Sci. Rep. 5, 9592 (2015)

    Article  Google Scholar 

  • F. Göttfert, T. Pleiner, J. Heine, V. Westphal, D. Görlich, S.J. Sahl, S.W. Hell, Strong signal increase in sted fluorescence microscopy by imaging regions of subdiffraction extent. Proc. Natl. Acad. Sci. U. S. A. 114, 2125–2130 (2017)

    Article  Google Scholar 

  • M. Pusey, J. Barcena, M. Morris, A. Singhal, Q. Yuan, J. Ng, Trace fluorescent labeling for protein crystallization. Acta Crystallogr. F Struct. Biol. Commun. 71, 806–814 (2015)

    Article  Google Scholar 

  • J.R. Simard, M. Getlik, C. Grütter, R. Schneider, S. Wulfert, D. Rauh, Fluorophore labeling of the glycine-rich loop as a method of identifying inhibitors that bind to active and inactive kinase conformations. J. Am. Chem. Soc. 132, 4152–4160 (2010)

    Article  Google Scholar 

  • T. Tamura, Y. Kioi, T. Miki, S. Tsukiji, I. Hamachi, Fluorophore labeling of native fkbp12 by ligand-directed tosyl chemistry allows detection of its molecular interactions in vitro and in living cells. J. Am. Chem. Soc. 135, 6782–6785 (2013)

    Article  Google Scholar 

  • K.E. Beatty, D.A. Tirrell, Two-color labeling of temporally defined protein populations in mammalian cells. Bioorg. Med. Chem. Lett. 18, 5995–5999 (2008)

    Article  Google Scholar 

  • A. Hartmann, G. Krainer, M. Schlierf, Different fluorophore labeling strategies and designs affect millisecond kinetics of DNA hairpins. Molecules 19, 13735–13754 (2014)

    Article  Google Scholar 

  • C.G. Jones, V. Stavila, M.A. Conroy, P. Feng, B.V. Slaughter, C.E. Ashley, M.D. Allendorf, Versatile synthesis and fluorescent labeling of zif-90 nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces 8, 7623–7630 (2016)

    Article  Google Scholar 

  • H. Sahoo, Fluorescent labeling techniques in biomolecules: a flashback. RSC Adv. 2, 7017–7029 (2012)

    Article  Google Scholar 

  • W. Nomura, Y. Tanabe, H. Tsutsumi, T. Tanaka, K. Ohba, N. Yamamoto, H. Tamamura, Fluorophore labeling enables imaging and evaluation of specific cxcr4− ligand interaction at the cell membrane for fluorescence-based screening. Bioconjug. Chem. 19, 1917–1920 (2008)

    Article  Google Scholar 

  • Z. Li, K. Munro, I.I. Ebralize, M.R. Narouz, J.D. Padmos, H. Hao, C.M. Crudden, J.H. Horton, N-heterocyclic carbene self-assembled monolayers on gold as surface plasmon resonance biosensors. Langmuir 33, 13936–13944 (2017)

    Article  Google Scholar 

  • S. Savas, A. Ersoy, Y. Gulmez, S. Kilic, B. Levent, Z. Altintas, Nanoparticle enhanced antibody and DNA biosensors for sensitive detection of salmonella. Materials 11, 1541 (2018)

    Article  Google Scholar 

  • L. Huang, Z. Li, Y. Lou, F. Cao, D. Zhang, X. Li, Recent advances in scanning electrochemical microscopy for biological applications. Materials 11, 1389 (2018)

    Article  Google Scholar 

  • J.G. Egan, N. Drossis, I.I. Ebralidze, H.M. Fruehwald, N.O. Laschuk, J. Poisson, H.W. de Haan, O.V. Zenkina, Hemoglobin-driven iron-directed assembly of gold nanoparticles. RSC Adv. 8, 15675–15686 (2018)

    Article  Google Scholar 

  • M. Salerno, S. Dante, Scanning kelvin probe microscopy: challenges and perspectives towards increased application on biomaterials and biological samples. Materials 11, 951 (2018)

    Article  Google Scholar 

  • X. Ji, K. Ji, V. Chittavong, R.E. Aghoghovbia, M. Zhu, B. Wang, Click and fluoresce: a bioorthogonally activated smart probe for wash-free fluorescent labeling of biomolecules. J. Org. Chem. 82, 1471–1476 (2017)

    Article  Google Scholar 

  • H. Nonaka, S.-h. Fujishima, S.-h. Uchinomiya, A. Ojida, I. Hamachi, Selective covalent labeling of tag-fused gpcr proteins on live cell surface with a synthetic probe for their functional analysis. J. Am. Chem. Soc. 132, 9301–9309 (2010)

    Article  Google Scholar 

  • V.C. DeRocco, T. Anderson, J. Piehler, D.A. Erie, K. Weninger, Four-color single molecule fluorescence with noncovalent dye labeling to monitor dynamic multimolecular complexes. Biotechniques 49, 807 (2010)

    Article  Google Scholar 

  • M. Rashidian, J.K. Dozier, M.D. Distefano, Enzymatic labeling of proteins: techniques and approaches. Bioconjug. Chem. 24, 1277–1294 (2013)

    Article  Google Scholar 

  • M.Z. Lin, L. Wang, Selective labeling of proteins with chemical probes in living cells. Physiology 23, 131–141 (2008)

    Article  Google Scholar 

  • Y. Yano, N. Furukawa, S. Ono, Y. Takeda, K. Matsuzaki, Selective amine labeling of cell surface proteins guided by coiled-coil assembly. Biopolymers 106, 484–490 (2016)

    Article  Google Scholar 

  • L.A. Montoya, M.D. Pluth, Hydrogen sulfide deactivates common nitrobenzofurazan-based fluorescent thiol labeling reagents. Anal. Chem. 86, 6032–6039 (2014)

    Article  Google Scholar 

  • M.H. Lauer, C. Vranken, J. Deen, W. Frederickx, W. Vanderlinden, N. Wand, V. Leen, M.H. Gehlen, J. Hofkens, R.K. Neely, Methyltransferase-directed covalent coupling of fluorophores to DNA. Chem. Sci. 8, 3804–3811 (2017)

    Article  Google Scholar 

  • Y. Suseela, N. Narayanaswamy, S. Pratihar, T. Govindaraju, Far-red fluorescent probes for canonical and non-canonical nucleic acid structures: current progress and future implications. Chem. Soc. Rev. 47, 1098–1131 (2018)

    Article  Google Scholar 

  • M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, P. Müller, Three-dimensional correlative single-cell imaging utilizing fluorescence and refractive index tomography. J. Biophotonics 11, e201700145 (2018)

    Article  Google Scholar 

  • E.A. Specht, E. Braselmann, A.E. Palmer, A critical and comparative review of fluorescent tools for live-cell imaging. Annu. Rev. Physiol. 79, 93–117 (2017)

    Article  Google Scholar 

  • K.M. Piltti, B.J. Cummings, K. Carta, A. Manughian-Peter, C.L. Worne, K. Singh, D. Ong, Y. Maksymyuk, M. Khine, A.J. Anderson, Live-cell time-lapse imaging and single-cell tracking of in vitro cultured neural stem cells–tools for analyzing dynamics of cell cycle, migration, and lineage selection. Methods 133, 81–90 (2018)

    Article  Google Scholar 

  • S. Claveau, J.-R. Bertrand, F. Treussart, Fluorescent nanodiamond applications for cellular process sensing and cell tracking. Micromachines 9, 247 (2018)

    Article  Google Scholar 

  • N. Futai, M. Tamura, T. Ogawa, M. Tanaka, Microfluidic long-term gradient generator with axon separation prototyped by 185 nm diffused light photolithography of su-8 photoresist. Micromachines 10, 9 (2019)

    Article  Google Scholar 

  • M. Gallab, K. Tomita, S. Omata, F. Arai, Fabrication of 3d capillary vessel models with circulatory connection ports. Micromachines 9, 101 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2017R1A4A1015681, NRF-2018R1D1A3B07047434, and 2019R1I1A3A01060695).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Jinmu Jung and Jonghyun Oh; Data curation, Yeongseok Jang and Hojun Shin; Formal analysis, Yeongseok Jang and Hojun Shin; Investigation, Yeongseok Jang and Hojun Shin; Project administration, Jinmu Jung and Jonghyun Oh; Supervision, Jinmu Jung and Jonghyun Oh; Writing—original draft, Yeongseok Jang and Hojun Shin; Writing—review & editing, Jinmu Jung and Jonghyun Oh.

Corresponding authors

Correspondence to Jinmu Jung or Jonghyun Oh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, Y., Shin, H., Jung, J. et al. One-step microchip for DNA fluorescent labeling. Biomed Microdevices 22, 1 (2020). https://doi.org/10.1007/s10544-019-0454-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0454-1

Keywords

Navigation