Skip to main content
Log in

Effect of Salicylic Acid on the Oxidative and Photosynthetic Processes in Tomato Plants at Invasion with Root-Knot Nematode Meloidogyne incognita (Kofoid Et White, 1919) Chitwood, 1949

  • BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY
  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

A study of the processes of lipid peroxidation and the activity of the peroxidase enzyme, as well as photosynthetic pigments in susceptible tomato plants treated with salicylic acid (SA), during infection with the root-knot nematode Meloidogyneincognita. It was shown that, in the roots of SA-treated plants, the activity of lipid peroxidation is higher compared to the untreated plants, especially in the case of nematode invasion. A significant increase in the activity of lipid peroxidation in SA-treated invasive plants compared with untreated was noted during the transition of larvae to the sedentary stage and the beginning of the formation of feeding areas—giant cells (3–5 days after invasion). This, apparently, contributes to the inhibition of the development of the parasite and the reduction of plant infection and also indicates the involvement of oxidative processes in the mechanism of the induced resistance of plants to root-knot nematodes. In the SA-treated plants, the qualitative and quantitative composition of photosynthetic pigments, disturbed by invasion, was restored and corresponded to the control level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Decraemer, W. and Hunt, D.J., Structure and Classification in Plant Nematology, 2nd ed., Perry, R.N. and Moens, M., Eds., Wallingford, Oxfordshire: CAB International, 2013, pp. 3–29.

    Google Scholar 

  2. Melillo, M.T., Leonetti, P., Bongiovanni, M., et al., New Phytol., 2006, vol. 170, pp. 501–512.

    Article  CAS  Google Scholar 

  3. Melillo, M.T., Leonetti, P., Leone, A., et al., Eur. J. Plant Pathol., 2011, vol. 130, pp. 489–502. https://doi.org/10.1007/s10658-011-9768-4

    Article  CAS  Google Scholar 

  4. Kozel, N.V. and Shalygo, N.V., Russ. J. Plant Physiol., 2009, vol. 56, no. 3, pp. 316–322.

    Article  CAS  Google Scholar 

  5. Desikan, R., Mackerness, S.A.-H., Hancock, J.T., and Steven, J., Plant Physiol., 2001, vol. 127, pp. 159–172. https://doi.org/10.1104/pp.127.1.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Herrera-Vásquez, A., Salinas, P., and Holuigue, L., Front. Plant. Sci., 2015, vol. 6, p. 171. https://doi.org/10.3389/fpls.2015.00171

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zurbriggen, M.D., Carrillo, N., and Hajirezaei, M.-R., Plant Signal. Behav., 2010, vol. 5, pp. 393–396. https://doi.org/10.4161/psb.5.4.10793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nazar, R., Iqbal, N., Syeed, S., et al., J. Plant. Physiol., 2011, vol. 168, pp. 807–815. https://doi.org/10.1016/j.jplph.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  9. Zinovieva, S.V., Udalova, Zh.V., Vasyukova, N.I., et al., Biol. Bull. (Moscow), 2011, vol. 38, no. 5, pp. 453–458.

  10. Kuznetsov, Vl.V., Kuznetsov, V.V., and Romanov, G.A., Molekulyarno-geneticheskie i biokhimicheskie metody v sovremennoi biologii rastenii (Molecular Genetic and Biochemical Methods in Modern Plant Biology), Moscow: BINOM, Laboratoriya Znanii, 2012.

    Google Scholar 

  11. Lichtenthaler, H.K., Methods Enzymol., 1987, vol. 148, pp. 350–382. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  12. Gillet, F.X., Bournaud, C., Antonino de Souza, J.D., Jr., et al., Ann. Bot., 2017, vol. 119, no. 5, pp. 775–789. https://doi.org/10.1093/aob/mcw260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zacheo, G., Bleve-Zacheo, T., and Pricolo, G., Nematol. Medit., 1987, vol. 15, pp. 293–302.

    Google Scholar 

  14. Wada, M., Plant Sci., 2013, vol. 210, pp. 177–182. https://doi.org/10.1016/j.plantsci.2013.05.016

    Article  CAS  Google Scholar 

  15. Lavrova, V.V., Zinovieva, S.V., Udalova, Zh.V., et al., Dokl. Biochem. Biophys., 2017, vol. 476, pp. 306–309.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zh. V. Udalova or S. V. Zinovieva.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udalova, Z.V., Zinovieva, S.V. Effect of Salicylic Acid on the Oxidative and Photosynthetic Processes in Tomato Plants at Invasion with Root-Knot Nematode Meloidogyne incognita (Kofoid Et White, 1919) Chitwood, 1949. Dokl Biochem Biophys 488, 350–353 (2019). https://doi.org/10.1134/S160767291905017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S160767291905017X

Navigation