Skip to main content
Log in

Reducing variability in motor cortex activity at a resting state by extracellular GABA for reliable perceptual decision-making

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Interaction between sensory and motor cortices is crucial for perceptual decision-making, in which intracortical inhibition might have an important role. We simulated a neural network model consisting of a sensory network (NS) and a motor network (NM) to elucidate the significance of their interaction in perceptual decision-making in association with the level of GABA in extracellular space: extracellular GABA concentration. Extracellular GABA molecules acted on extrasynaptic receptors embedded in membranes of pyramidal cells and suppressed them. A reduction in extracellular GABA concentration either in NS or NM increased the rate of errors in perceptual decision-making, for which an increase in ongoing-spontaneous fluctuations in subthreshold neuronal activity in NM prior to sensory stimulation was responsible. Feedback (NM-to-NS) signaling enhanced selective neuronal responses in NS, which in turn increased stimulus-evoked neuronal activity in NM. We suggest that GABA in extracellular space contributes to reducing variability in motor cortex activity at a resting state and thereby the motor cortex can respond correctly to a subsequent sensory stimulus. Feedback signaling from the motor cortex improves the selective responsiveness of the sensory cortex, which ensures the fidelity of information transmission to the motor cortex, leading to reliable perceptual decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bianchim, M.T., Haas, K.F., Macdonald, R.L. (2001). Structural determinants of fast desensitization and desensitization-deactivation coupling in GABAa receptors. J. Neurosci., 21, 1127–36.

    Google Scholar 

  • Bianchim, M.T., Haas, K.F., Macdonald, R.L. (2002). Alpha1 and alpha6 subunits specify distinct desensitization, deactivation and neurosteroid modulation of GABA(A) receptors containing the delta subunit. Neuropharmacology, 43, 492–502.

    Google Scholar 

  • Brickley, S.G., Cull-Candy, S.G., Farrant, M. (1996). Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J. Physiol., 497.3, 753–759.

    Google Scholar 

  • Brown, N., Kerby, J., Bonnert, T.P., Whiting, P.J., Wafford, K.A. (2002). Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABA(A) receptors. Br. J. Pharmacol., 136, 965–974.

    CAS  PubMed  PubMed Central  Google Scholar 

  • deCharms, R.C., & Zador, A. (2000). Neural representation and the cortical code. Annu. Rev. Neurosci., 23, 613–647.

    CAS  PubMed  Google Scholar 

  • Drasbek, K.R., & Jensen, K. (2006). THIP, a hypnotic and antinociceptive drug, enhances an extrasynaptic GABAA receptor-mediated conductance in mouse neocortex. Cereb. Cortex, 16, 1134–1141.

    PubMed  Google Scholar 

  • Edden, R.A., Muthukumaraswamy, S.D., Freeman, T.C., Singh, K.D. (2009). Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J. Neurosci., 29, 15721–15726.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farrant, M., & Nusser, Z. (2005). Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat. Rev. Neurosci., 6, 215–229.

    CAS  Google Scholar 

  • Fox, M.D., Snyder, A.Z., Vincent, J.L., Raichle, M.E. (2007). Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron, 56, 171–184.

    CAS  PubMed  Google Scholar 

  • Gonzalez-Burgos, G., Fish, K.N., Lewis, D.A. (2011). GABA Neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia. Neural Plasticity, 2011, 723184.

    PubMed  PubMed Central  Google Scholar 

  • Hasler, G., van der Veen, J.W., Tumonis, T., Meyers, N., Shen, J., Drevets, W.C. (2007). Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry, 64, 193–200.

    CAS  PubMed  Google Scholar 

  • Hatsopoulos, N.G., & Suminski, A.J. (2011). Sensing with the motor cortex. Neuron, 72, 477–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshino, O. (2009). GABA Transporter preserving ongoing spontaneous neuronal activity at firing subthreshold. Neural Comput., 21, 1683–1713.

    Google Scholar 

  • Hoshino, O. (2012). Regulation of ambient GABA levels by neuron-glia signaling for reliable perception of multisensory events. Neural Comput., 24, 2964–2993.

    PubMed  Google Scholar 

  • Hoshino, O. (2014). Balanced crossmodal excitation and inhibition essential for maximizing multisensory gain. Neural Comput., 26, 1362–1385.

    PubMed  Google Scholar 

  • Hoshino, O., Zheng, M., Watanabe, K. (2018). Perceptual judgments via sensory-motor interaction assisted by cortical GABA. J. Comput. Neurosci., 44, 233–251.

    PubMed  Google Scholar 

  • Jones, M.V., & Westbrook, G.L. (1995). Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron, 15, 181–91.

    CAS  PubMed  Google Scholar 

  • Kolasinski, J., Logan, J.P., Hinson, E.L., Manners, D., Divanbeighi, Z.A.P., Makin, T.R., Emir, U.E., Stagg, C.J. (2017). A mechanistic link from GABA to cortical architecture and perception. Current Biology, 27, 1685–1691.

    CAS  PubMed Central  Google Scholar 

  • Lerma, J., Herranz, A.S., Herreras, O., Abraira, V., Martin, D.R. (1986). In vivo determination of extracellular concentration of amino acids in the rat hippocampus: A method based on brain dialysis and computerized analysis. Brain Res., 384, 145–155.

    CAS  PubMed  Google Scholar 

  • Leventhal, A.G., Thompson, K.G., Liu, D., Zhou, Y., Ault, S.J. (1995). Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J. Neurosci., 15, 1808–1818.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maconochie, D.J., Zempel, J.M., Steinbach, J.H. (1994). How quickly can GABAA receptors open?. Neuron, 12, 61–71.

    CAS  PubMed  Google Scholar 

  • Makino, H., Hwang, E.J., Hedrick, N.G., Komiyama, T. (2016). Circuit Mechanisms of Sensorimotor Learning. Neuron, 92, 705–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manita, S., Suzuki, T., Homma, C., Matsumoto, T., Odagawa, M., Yamada, K., Ota, K., Matsubara, V., Inutsuka, A., Sato, M., Ohkura, M., Yamanaka, A., Yanagawa, Y., Nakai, J., Hayashi, Y., Larkum, M.E., Murayama, M. (2015). A Top-Down Cortical Circuit for Accurate Sensory Perception. Neuron, 86, 1304–1316.

    CAS  PubMed  Google Scholar 

  • Mao, T., Kusefoglu, D., Hooks, B.M., Huber, D., Petreanu, L., Svoboda, K. (2011). Long-range neuronal circuits underlying the interaction betweeN Ssory and motor cortex. Neuron, 72, 111–123.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matyas, F., Sreenivasan, V., Marbach, F., Wacongne, C., Barsy, B., Mateo, C., Aronoff, R., Petersen, C.C. (2010). Motor control by sensory cortex. Science, 330, 1240–1243.

    CAS  PubMed  Google Scholar 

  • Mountcastle, V.B. (1997). The columnar organization of the neocortex. Brain: A Journal of Neurology, 120, 701–722.

    Google Scholar 

  • Nusser, Z., Roberts, J.D., Baude, A., Richards, J.G., Somogyi, P. (1995). Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method. The Journal of Neuroscience, 5, 2948–2960.

    Google Scholar 

  • Ortinski, P.I., Turner, J.R., Barberis, A., Motamedi, G., Yasuda, R.P., Wolfe, B.B., Kellar, K.J., Vicini, S. (2006). Deletion of the GABA(a) receptor alpha1 subunit increases tonic GABA(a) receptor current: a role for GABA uptake transporters. The Journal of Neuroscience, 26, 9323–9331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puts, N.A., Edden, R.A., Evans, C.J., McGlone, F., McGonigle, D.J. (2011). Regionally specific human GABA concentration correlates with tactile discrimination thresholds. J. Neurosci., 31, 16556–16560.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y., Petersen, C.C. (2013). Membrane potential correlates of sensory perception in mouse barrel cortex. Nature Neuroscience, 16, 1671–1677.

    CAS  PubMed  Google Scholar 

  • Sandberg, K., Blicher, J.U., Dong, M.Y., Rees, G., Near, J., Kanai, R. (2014). Occipital GABA correlates with cognitive failures in daily life. Neuroimage, 87, 55–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena, N.C., & Macdonald, R.L. (1996). Properties of putative cerebellar gamma-aminobutyric acidA receptor isoforms. Mol. Pharmacol., 49, 567–579.

    CAS  PubMed  Google Scholar 

  • Schmolesky, M.T., Wang, Y., Pu, M., Leventhal, A.G. (2000). Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys. Nat. Neurosci., 3, 384–390.

    CAS  PubMed  Google Scholar 

  • Scimemi, A., Semyanov, A., Sperk, G., Kullmann, D.M., Walker, M.C. (2005). Multiple and plastic receptors mediate tonic GABAA receptor currents in the hippocampus. J. Neurosci., 25, 10016–10024.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scimemi, A., Andersson, A., Heeroma, J.H., Strandberg, J., Rydenhag, B., McEvoy, A.W., Thom, M., Asztely, F., Walker. M.C. (2006). Tonic GABA(A) receptor-mediated currents in human brain. Eur. J. Neurosci., 24, 1157–1160.

    PubMed  Google Scholar 

  • Semyanov, A., Walker, M.C., Kullmann, D.M., Silver, R.A. (2004). Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci., 27, 262–269.

    CAS  PubMed  Google Scholar 

  • Siddoway, B., Hou, H., Xia, H. (2014). Molecular mechanisms of homeostatic synaptic downscaling. Neuropharmacology, 78, 38–44.

    CAS  PubMed  Google Scholar 

  • Soltesz, I., & Nusser, Z. (2001). Neurobiology. Background inhibition to the fore. Nature, 409, 24–25.

    CAS  Google Scholar 

  • Somogyi, P., Takagi, H., Richards, J.G., Mohler, H. (1989). Subcellular localization of benzodiazepine/GABAA receptors in the cerebellum of rat, cat, and monkey using monoclonal antibodies. J. Neurosci., 9, 2197–2209.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stagg, C.J., Bestmann, S., Constantinescu, A.O., Moreno, L.M., Allman, C., Mekle, R., Woolrich, M., Near, J., Johan-Berg, H., Rothwell, J.C. (2011). Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J. Physiol., 589, 5845–5855.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sumner, P., Edden, R.A., Bompas, A., Evans, C.J., Singh, K.D. (2010). More GABA, less distraction: a neurochemical predictor of motor decision speed. Nat. Neurosci., 13, 825–827.

    CAS  PubMed  Google Scholar 

  • Tossman, U., Jonsson, G., Ungerstedt, U. (1986). Regional distribution and extracellular levels of amino acids in rat central nervous system. Acta Physiol. Scand., 127, 533–545.

    CAS  PubMed  Google Scholar 

  • Turrigiano, G.G., & Nelson, S.B. (2000). Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol., 10, 358–364.

    CAS  PubMed  Google Scholar 

  • Xu, X., Ichida, J., Shostak, Y., Bonds, A.B., Casagrande, V.A. (2002). Are primate lateral geniculate nucleus (LGN) cells really sensitive to orientation or direction?. Vis. Neurosci., 19, 97–108.

    PubMed  Google Scholar 

  • Zach, N., Inbar, D., Grinvald, Y., Bergman, H., Vaadia, E. (2008). Emergence of novel representations in primary motor cortex and premotor neurons during associative learning. J. Neurosci., 28, 9545–9556.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zagha, E., Casale, A.E., Sachdev, R.N., McGinley, M.J., McCormick, D.A. (2013). Motor cortex feedback influences sensory processing by modulating network state. Neuron, 79, 567–578.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Hoshino.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Maxim Bazhenov

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshino, O., Kameno, R. & Watanabe, K. Reducing variability in motor cortex activity at a resting state by extracellular GABA for reliable perceptual decision-making. J Comput Neurosci 47, 191–204 (2019). https://doi.org/10.1007/s10827-019-00732-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-019-00732-6

Keywords

Navigation