Skip to main content
Log in

Fracture-induced changes in biomarkers CTX, PINP, OC, and BAP—a systematic review

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

To assess the time from fracture until bone turnover markers (BTM), which are biochemical markers reflecting in vivo bone formation and resorptive activity, have returned to a stable level since BTM have been shown to be at least as good as bone mineral density in monitoring the effect of anti-resorptive treatment in osteoporosis. This study searched for articles in PUBMED, CINAHL, Medline, EM-BASE, and Cochrane, and identified 3486 unique articles. These articles were screened based on predefined inclusion and exclusion criteria. Seven articles addressing time to normalization of either CTX, PINP, osteocalcin, or bone-specific alkaline phosphatase after a recent fracture were identified and these were analyzed qualitatively. CTX appeared to return to baseline within 6 months. PINP appeared to return to baseline within 6 months and interestingly dip below baseline after a year. Osteocalcin was elevated throughout the first year after a fracture, with most changes in the first 6 months. Bone-specific alkaline phosphatase (BAP) was increased for up to a year, however with a discrepancy between used assays. Seven studies were identified, showing CTX and PINP to return to baseline within 6 months. OC was elevated for 12 months. BAP was increased for up to a year. However, none of these studies had fasting patients and a long follow-up period with regular measurements. The studies could indicate that the BTM CTX and PINP have returned to baseline within 6 months; however, further studies are needed assessing pre-analytical factors while having a long follow-up. Bone turnover markers appear as good as or better than bone mineral density in monitoring the effect of anti-resorptive medication in osteoporosis. This study tries to identify the time from fracture until BTM are back at baseline. Most studies did not however take pre-analytical variation into consideration. Further research is therefore needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

S:

biomarkers measured in serum

U:

biomarkers measured in urine

BAP:

bone-specific alkaline phosphatase

CTX:

carboxy-terminal telopeptide cross-links

DPD:

deoxypyridinoline

ECTS:

European Calcified Tissue Society

ICTP:

cross-linked carboxy-terminal telopeptide of type I collagen

IOF:

International Osteoporosis Foundation

IFCC:

International Federation of Clinical Chemistry

NTX:

amino-terminal telopeptide cross-links

OC:

osteocalcin

Pyr:

pyridinoline

PICP:

type-1 c-terminal propeptide

PINP:

type-1 n-terminal propeptide

PIIINP:

type-3 n-terminal propeptide

POstn:

periostin

TRAcP:

tartate-resistant acid phosphatase

References

  1. Kurland ES, Cosman F, McMahon DJ, Rosen CJ, Lindsay R, Bilezikian JP (2000) Parathyroid hormone as a therapy for idiopathic osteoporosis in men: effects on bone mineral density and bone markers. J Clin Endocrinol Metab 85(9):3069–3076

    CAS  PubMed  Google Scholar 

  2. Alvarez L, Guanabens N, Peris P, Monegal A, Bedini JL, Deulofeu R et al (1995) Discriminative value of biochemical markers of bone turnover in assessing the activity of Paget’s disease. J Bone Miner Res 10(3):458–465

    Article  CAS  Google Scholar 

  3. Civitelli R, Armamento-Villareal R, Napoli N (2009) Bone turnover markers: understanding their value in clinical trials and clinical practice. Osteoporos Int 20(6):843–851

    Article  CAS  Google Scholar 

  4. van Beek EM, de Vries TJ, Mulder L, Schoenmaker T, Hoeben KA, Matozaki T, Langenbach GEJ, Kraal G, Everts V, van den Berg TK (2009) Inhibitory regulation of osteoclast bone resorption by signal regulatory protein alpha. FASEB J 23(12):4081–4090

    Article  Google Scholar 

  5. Carter DH, Sloan P, Aaron JE (1991) Immunolocalization of collagen types I and III, tenascin, and fibronectin in intramembranous bone. J Histochem Cytochem 39(5):599–606

    Article  CAS  Google Scholar 

  6. Kurdy NM, Bowles S, Marsh DR, Davies A, France M (1998) Serology of collagen types I and III in normal healing of tibial shaft fractures. J Orthop Trauma 12(2):122–126

    Article  CAS  Google Scholar 

  7. Joerring S, Jensen LT, Andersen GR, Johansen JS (1992) Types I and III procollagen extension peptides in serum respond to fracture in humans. Arch Orthop Trauma Surg 111(5):265–267

    Article  CAS  Google Scholar 

  8. Vasikaran S, Eastell R, Bruyere O, Foldes AJ, Garnero P, Griesmacher A et al (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22(2):391–420

    Article  CAS  Google Scholar 

  9. Terreni A, Pezzati P (2012) Biochemical markers in the follow-up of the osteoporotic patients. Clin Cases Miner Bone Metab 9(2):80–84

    PubMed  PubMed Central  Google Scholar 

  10. Szulc P, Naylor K, Hoyle NR, Eastell R, Leary ET (2017) Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporos Int 28(9):2541–2556

    Article  CAS  Google Scholar 

  11. Talwar S. Bone markers in osteoporosis Medscape 2017 [Available from: https://emedicine.medscape.com/article/128567-overview. Accessed 01 Jan 2019

  12. Vasikaran S, Cooper C, Eastell R, Griesmacher A, Morris HA, Trenti T et al (2011) International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med 49(8):1271–1274

    Article  CAS  Google Scholar 

  13. Bauer DC, Black DM, Garnero P, Hochberg M, Ott S, Orloff J, Thompson DE, Ewing SK, Delmas PD, for the Fracture Intervention Trial Study Group (2004) Change in bone turnover and hip, non-spine, and vertebral fracture in alendronate-treated women: the fracture intervention trial. J Bone Miner Res 19(8):1250–1258

    Article  Google Scholar 

  14. Jacques R, Boonen S, Cosman F, Reid I, Bauer D, Black D et al (2012) Relationship of changes in total hip bone mineral density to vertebral and nonvertebral fracture risk in women with postmenopausal osteoporosis treated with once-yearly zoledronic acid 5 mg: the HORIZON-Pivotal Fracture Trial (PFT). J Bone Min Res [Internet] 27(8) 1627–34 pp. Available from: http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/691/CN-00969691/frame.html. Accessed 01 Jan 2019

  15. Eastell R, Hannon R, Wenderoth D, Rodriguez-Moreno J, Sawicki A (2011) Effect of stopping risedronate after long-term treatment on bone turnover. J Clin Endocrinol Metab [Internet] 96(11) 3367–73 pp. Available from: http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/053/CN-01017053/frame.html. Accessed 01 Jan 2019

  16. Diez-Perez A, Naylor KE, Abrahamsen B, Agnusdei D, Brandi ML, Cooper C et al (2017) International Osteoporosis Foundation and European Calcified Tissue Society Working Group. Recommendations for the screening of adherence to oral bisphosphonates. Osteoporos Int 28(3):767–774

    Article  CAS  Google Scholar 

  17. Qvist P, Christgau S, Pedersen BJ, Schlemmer A, Christiansen C (2002) Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone. 31(1):57–61

    Article  CAS  Google Scholar 

  18. Szulc P, Delmas PD (2008) Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos Int 19(12):1683–1704

    Article  CAS  Google Scholar 

  19. Chubb SA (2012) Measurement of C-terminal telopeptide of type I collagen (CTX) in serum. Clin Biochem 45(12):928–935

    Article  CAS  Google Scholar 

  20. Vasikaran SD, Chubb SP, Ebeling PR, Jenkins N, Jones GR, Kotowicz MA et al (2014) Harmonised Australian reference intervals for serum PINP and CTX in adults. Clin Biochem Rev 35(4):237–242

    PubMed  PubMed Central  Google Scholar 

  21. Schlemmer A, Hassager C (1999) Acute fasting diminishes the circadian rhythm of biochemical markers of bone resorption. Eur J Endocrinol 140(4):332–337

    Article  CAS  Google Scholar 

  22. Woitge HW, Pecherstorfer M, Li Y, Keck AV, Horn E, Ziegler R et al (1999) Novel serum markers of bone resorption: clinical assessment and comparison with established urinary indices. J Bone Miner Res 14(5):792–801

    Article  CAS  Google Scholar 

  23. Szulc P, Seeman E, Delmas PD (2000) Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int 11(4):281–294

    Article  CAS  Google Scholar 

  24. Herrmann M, Müller M, Scharhag J, Sand-Hill M, Kindermann W, Herrmann W (2007) The effect of endurance exercise-induced lactacidosis on biochemical markers of bone turnover. Clin Chem Lab Med 45(10):1381–1389

    Article  CAS  Google Scholar 

  25. Redmond J, Fulford AJ, Jarjou L, Zhou B, Prentice A, Schoenmakers I (2016) Diurnal rhythms of bone turnover markers in three ethnic groups. J Clin Endocrinol Metab 101(8):3222–3230

    Article  CAS  Google Scholar 

  26. Weiler R, Keen R, Wolman R (2012) Changes in bone turnover markers during the close season in elite football (soccer) players. J Sci Med Sport 15(3):255–258

    Article  Google Scholar 

  27. Stokes FJ, Ivanov P, Bailey LM, Fraser WD (2011) The effects of sampling procedures and storage conditions on short-term stability of blood-based biochemical markers of bone metabolism. Clin Chem 57(1):138–140

    Article  CAS  Google Scholar 

  28. Hodgson S (2009) AO Principles of Fracture Management. Annals of The Royal College of Surgeons of England 91(5):448–449. https://doi.org/10.1308/003588409X432419f

  29. Hitz MF, Jensen JE, Eskildsen PC (2007) Bone mineral density and bone markers in patients with a recent low-energy fracture: effect of 1 y of treatment with calcium and vitamin D. Am J Clin Nutr 86(1):251–259

    Article  CAS  Google Scholar 

  30. Ingle BM, Hay SM, Bottjer HM, Eastell R (1999) Changes in bone mass and bone turnover following ankle fracture. Osteoporos Int 10(5):408–415

    Article  CAS  Google Scholar 

  31. Ingle BM, Hay SM, Bottjer HM, Eastell R (1999) Changes in bone mass and bone turnover following distal forearm fracture. Osteoporos Int 10(5):399–407

    Article  CAS  Google Scholar 

  32. Ivaska KK, Gerdhem P, Akesson K, Garnero P, Obrant KJ (2007) Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J Bone Miner Res 22(8):1155–1164

    Article  CAS  Google Scholar 

  33. Ohishi T, Takahashi M, Yamanashi A, Suzuki D, Nagano A (2008) Sequential changes of bone metabolism in normal and delayed union of the spine. Clin Orthop Relat Res 466(2):402–410

    Article  Google Scholar 

  34. Veitch SW, Findlay SC, Hamer AJ, Blumsohn A, Eastell R, Ingle BM (2006) Changes in bone mass and bone turnover following tibial shaft fracture. Osteoporos Int 17(3):364–372

    Article  CAS  Google Scholar 

  35. Yan J, Liu HJ, Li H, Chen L, Bian YQ, Zhao B, Han HX, Han SZ, Han LR, Wang DW, Yang XF (2017) Circulating periostin levels increase in association with bone density loss and healing progression during the early phase of hip fracture in Chinese older women. Osteoporos Int 28(8):2335–2341

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.D. Højsager.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Højsager, F., Rand, M., Pedersen, S. et al. Fracture-induced changes in biomarkers CTX, PINP, OC, and BAP—a systematic review. Osteoporos Int 30, 2381–2389 (2019). https://doi.org/10.1007/s00198-019-05132-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-019-05132-1

Keywords

Navigation