Skip to main content

Advertisement

Log in

Mutanase Enzyme from Paracoccus mutanolyticus RSP02: Characterization and Application as a Biocontrol Agent

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mutanases are enzymes that have the ability to cleave α-1,3 linkages in glucan polymer. In the present investigation, mutanase enzyme purified from the culture filtrate of Paracoccus mutanolyticus was evaluated for Streptococcal biofilm degradation and antimicrobial activity against pathogenic fungi along with enzyme kinetics, activation energies, pH and thermal stability. Biochemical and molecular characterization depicted that the enzyme showed optimum activity at pH 5.5 and at 50 °C. It displayed Michaelis–Menten behaviour with a Km of 1.263 ± 0.03 (mg/ml), Vmax of 2.712 ± 0.15 U/mg protein. Thermal stability studies denoted that it required 55.46 and 135.43 kJ mol−1 of energy for activation and deactivation in the temperature range of 30–50 °C and 50–70 °C respectively. Mutanase activity was enhanced ~ 50 and 75% by Fe2+ and EDTA, respectively, while presence of Hg2+ and Mn2+ inhibit > 90% of its activity. This enzyme has a molecular mass of 138 kDa and showed monomeric nature by Zymography. Scanning electron microscopy analysis of mutanase treated Streptococcal cells revealed cleavage of linkages among the cells and complete separation of cells, indicating its potential in dentistry as an anticaries agent in the prophylaxis and therapy of dental caries. In addition, antifungal activity of mutanase against Colletotrichum capsici MTCC 10147 and Cladosporium cladosporioide MTCC 7371 revealed that the enzyme has potential towards biological control of phytopathogens which could be used as an alternative bio-control agent against chemical pesticides in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wiater A, Pleszczynska M, Rogalski J, Szajnecka L, Szczodrak J (2013) Purification and properties of an α-(1 → 3)-glucanase (EC 3.2.1.84) from Trichoderma harzianum and its use for reduction of artificial dental plaque accumulation. Acta Biochim Pol 60:123–128

    Article  CAS  Google Scholar 

  2. Pleszczynska M, Wiater A, Szczodrak J (2010) Mutanase from Paenibacillus sp. MP-1 produced inductively by fungal α-1,3-glucan and its potential for the degradation of mutan and Streptococcus mutans biofilm. Biotechnol Lett 32:1699–1704. https://doi.org/10.1007/s10529-010-0346-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanz L, Montero M, Redondo J, Llobell A, Monte E (2005) Expression of an α-1,3-glucanase during mycoparasitic interaction of Trichoderma asperellum. FEBS J 272:493–499. https://doi.org/10.1111/j.1742-4658.2004.04491.x

    Article  CAS  PubMed  Google Scholar 

  4. Wiater A, Pleszynska M, Pietrykowska-Tudruj E, Janczarek M, Staniec B, Szczodrak J (2019) Isolation and characterization of α-(1-3)-glucan-degrading bacteria from the gut of Diaperis boleti feeding on Laetiporus sulphurous. Entomol Sci 22:36–41. https://doi.org/10.1111/ens.12332

    Article  Google Scholar 

  5. Zonneveld BJM (1972) A new type of enzyme, an exo-splitting α-1,3 glucanase from non-induced cultures of Aspergillus nidulans. Biochem Biophys Acta 258:541–547. https://doi.org/10.1016/0005-2744(72)90245-8

    Article  CAS  PubMed  Google Scholar 

  6. Buddana SK, Shetty PR, Krothapalli SRRS (2016) An endolytic mutanase from novel strain Paracoccus mutanolyticus: it’s application potential in dentistry. J Med Microbiol 65:985–991. https://doi.org/10.1099/jmm.0.000321

    Article  CAS  PubMed  Google Scholar 

  7. Matsuda S, Kawanami Y, Takeda H, Ooi T, Kinoshita S (1997) Purification and properties of mutanase from Bacillus circulans. J Ferment Bioeng 83:593–595. https://doi.org/10.1016/S0922-338X(97)81143-9

    Article  CAS  Google Scholar 

  8. Takehara T, Inoue M, Morioka T, Yokogawa K (1981) Purification and properties of endo-alpha-1,3-glucanase from a Streptomyces charteuses strain. J Bacteriol 145:729–735

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Suyotha W, Fujiki H, Cherdvorapong V, Takagi K, Yano S, Wakayama M (2017) A novel thermostable a-1,3-glucanase from Streptomyces thermodiastaticus HF 3-3. J Gen Appl Microbiol 63:296–304. https://doi.org/10.2323/jgam.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  10. Cherdvorapong V, Fujiki H, Suyotha W, Yoichi T, Shigekazu Y, Kazuyoshi T, Mamoru W (2019) Enzymatic and molecular characterization of α-1,3-glucanase (AglST2) from Streptomyces thermodiastaticus HF3-3 and its relation with α-1,3-glucanase HF65 (AglST1). J Gen Appl Microbiol 65:18–25. https://doi.org/10.2323/jgam.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  11. Wiater A, Szczodrak J, Pleszczynska M, Prochniak K (2005) Production and use of mutanase from Trichoderma harzianum for effective degradation of Streptococcal mutans. Braz J Microbiol 36:137–146. https://doi.org/10.1590/S1517-83822005000200008

    Article  CAS  Google Scholar 

  12. Inoue M, Yakushiji T, Katsuki M, Kudo N, Koga T (1988) Reduction of the adherence of Streptococcus sobrinus insoluble α-d-glucan by endo-(1→3)-α-d-glucanase. Carbohydr Res 182:277–286. https://doi.org/10.1016/0008-6215(88)84008-4

    Article  CAS  PubMed  Google Scholar 

  13. Buddana SK, Yashwanth VV, Prakasham RS (2015) Fibrinolytic, anti-inflammatory and anti-microbial properties of a-(1-3)-glucans produced from Streptococcus mutans (MTCC 497). Carbohydr Polym 115:152–159. https://doi.org/10.1016/j.carbpol.2014.08.083

    Article  CAS  PubMed  Google Scholar 

  14. Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    CAS  Google Scholar 

  15. Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  16. Wiater A, Szczodrak J, Rogalski J (2001) Purification and characterization of an extracellular mutanase from Trichoderma harzianum. Mycol Res 105:1357–1363. https://doi.org/10.1017/S0953756201004981

    Article  CAS  Google Scholar 

  17. Otsuka R, Imai S, Murata T, Nomur Y, Okamoto M, Tsumori H, Kakuta E, Hanada N, Momoi Y (2015) Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation. Microbiol Immunol 59:28–36. https://doi.org/10.1111/1348-0421.12214

    Article  CAS  PubMed  Google Scholar 

  18. Pleszczynska M, Wiater A, Skowronek M, Szczodrak J (2012) Purification and characterization of mutanase produced by Paenibacillus curdlanolyticus MP-1. Prep Biochem Biotechnol 42:335–347

    Article  CAS  Google Scholar 

  19. Pleszczynska M, Wiater A, Janczarek M, Szczodrak J (2015) (1→3)-α-d-Glucan hydrolases in dental biofilm prevention and control: a review. Int J Biol Macromol 79:761–778. https://doi.org/10.1016/j.ijbiomac.2015.05.052

    Article  CAS  PubMed  Google Scholar 

  20. Suyotha W, Yano S, Itoh T, Fujimoto H, Hibi T, Tachiki T, Wakayama M (2014) Characterization of α-1,3-glucanase isozyme from Paenibacillus glycanilyticus FH11 in a new subgroup of family 87 α-1,3-glucanase. J Biosci Bioeng 118:378–385. https://doi.org/10.1016/j.ijbiomac.2015.05.052

    Article  CAS  PubMed  Google Scholar 

  21. Meyer MT, Phaff HG (1980) Purification and properties of (1→3)-α-glucanases from Bacillus circulans WL-12. J Gen Microbiol 118:197–208. https://doi.org/10.1099/00221287-118-1-197

    Article  CAS  Google Scholar 

  22. Sumitomo N, Saeki K, Ozaki K, Ito S, Kobayashi T (2007) Mutanase from a Paenibacillus isolate: nucleotide sequence of the gene and properties of recombinant enzymes. Biochem Biophys Acta 1770:716–724. https://doi.org/10.1016/j.bbagen.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  23. Riordan JF (1977) The role of metals in enzyme activity. Ann Clin Lab Sci 7:119–129

    CAS  PubMed  Google Scholar 

  24. Simonson LG, Gaugler RW, Lamberts BL, Reiher DA (1982) Purification and properties of endo-1,3-a-D-glucanase from Pseudomonas. Biochem Biophys Acta 715:189–195. https://doi.org/10.1016/0304-4165(82)90358-0

    Article  CAS  PubMed  Google Scholar 

  25. Wiater A, Szczodrak J, Rogalski J (2004) Hydrolysis of mutan and prevention of its formation in streptococcal films by fungal α-d-glucanases. Process Biochem 39:1481–1489. https://doi.org/10.1016/S0032-9592(03)00281-4

    Article  CAS  Google Scholar 

  26. Fujikawa T, Sakaguchi A, Nishizawa Y, Kouzai Y, Minami E (2012) Surface α-1, 3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. PLoS Pathog 8:1–16. https://doi.org/10.1371/journal.ppat.1002882

    Article  CAS  Google Scholar 

  27. Zarei M, Saeed A, Hossein Z, Alireza S, Morteza D, Kambiz NA, Ahmad G, Abbasali M (2011) Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4A. Braz J Microbiol 42:1017–1029. https://doi.org/10.1590/S1517-83822011000300022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bachtiar EW, Bachtiar BM (2018) Relationship between Candida albicans and Streptococcus mutans in early childhood caries, evaluated by quantitative PCR [version 2; Peer review: 2 approved]. F1000Research 7:1645

    Article  CAS  Google Scholar 

  29. Ait-Lahsen H, Soler A, Rey M, de la Cruz J, Monte E, Llobell A (2001) An antifungal exo-α-1,3-glucanase (AGN13.1) from the biocontrol fungus Trichoderma harzianum. App Environ Microbiol 67:5833–5839. https://doi.org/10.1128/AEM.67.12.5833-5839.2001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director, CSIR-IICT Hyderabad. Mr. Sudheer Kumar B gratefully acknowledges the CSIR, New Delhi, for providing Senior Research Fellowship. R. Naga Amrutha thanks the Department of Science and Technology (DST), New Delhi for financial support. Uma Rajeswari Batchu for BRNS, Mumbai for providing JRF. The manuscript communication number through CSIR- IICT is IICT/Pubs/2019/223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reddy Shetty Prakasham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 714 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buddana, S.K., Amrutha, R.N., Batchu, U.R. et al. Mutanase Enzyme from Paracoccus mutanolyticus RSP02: Characterization and Application as a Biocontrol Agent. Indian J Microbiol 59, 436–444 (2019). https://doi.org/10.1007/s12088-019-00821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-019-00821-1

Keywords

Navigation