Skip to main content
Log in

Hetero-Polysaccharides Secreted from Dunaliella salina Exhibit Immunomodulatory Activity Against Peripheral Blood Mononuclear Cells and RAW 264.7 Macrophages

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Several species of microalgae have been known to produce exopolysaccharides (EPS) with potential immune activity. In the present investigation, ethyl acetate fraction of crude EPS secreted by Dunaliella salina was explored for immunomodulatory activity against peripheral blood mononuclear cells (PBMC) and RAW 264.7 macrophages. Effect of EPS on cell growth and cytokines production were measured using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and ELISA respectively. Griess reagent was used for measuring the nitric oxide production in RAW 264.7 macrophages. FTIR analysis and mass spectroscopy were carried out for the characterization. Ethyl acetate fraction exhibited dose dependent increase in proliferative index and cytokines production (IFN-γ, TNF-α, TGF-β). At low concentration (250 and 500 µg/mL), it showed growth inhibition and at higher concentration (1000 and 1500 µg/mL), it enhanced the cell growth. Interestingly, the pronounced increased TNF-α production was observed in ethyl acetate fraction treated PBMC cells at higher concentration (750 and 1000 µg/mL) indicating the immunostimulatory effect. In RAW cells, concentration dependent diminished cell growth (IC50 = 691 µg/mL) and nitric oxide production (IC50 = 630 µg/mL) was observed. FTIR analysis showed the presence of polysaccharides due to the detection of hydroxyl (–OH), Carbonyl (C–O) and alkyl (C–H) groups. Mass spectroscopy results revealed ethyl acetate fraction as penta-saccharide (m/z = 887.56 and 886.54) which are confirmed to be hetero-polysaccharides consisting of hexoses and pentoses along with association of ions. These results suggest that penta-saccharide (ethyl acetate fraction) isolated from D. salina may have the potential to be used for therapeutic purpose as immunomodulatory agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sutherland IW (1996) Extracellular polysaccharides. Biotechnol Prod Prim Metab. https://doi.org/10.1002/9783527620999.ch16f

    Article  Google Scholar 

  2. Borchers AT, Krishnamurthy A, Keen CL, Meyers FJ, Gershwin ME (2008) The immunobiology of mushrooms. Exp Biol Med 233:259–276. https://doi.org/10.3181/0708-MR-227

    Article  CAS  Google Scholar 

  3. Zhang Q, Li N, Zhou G, Lu X, Xu Z, Li Z (2003) In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol Res 48:151–155. https://doi.org/10.1016/S1043-6618(03)00103-8

    Article  CAS  PubMed  Google Scholar 

  4. de Jesus Raposo MF, de Morais AMB, de Morais RMSC (2015) Marine polysaccharides from algae with potential biomedical applications. Mar Drugs 13:2967–3028. https://doi.org/10.3390/md13052967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guzman S, Gato A, Lamela M, Freire-Garabal M, Calleja J (2003) Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res 17:665–670. https://doi.org/10.1002/ptr.1227

    Article  CAS  PubMed  Google Scholar 

  6. Ferreira SS, Passos CP, Madureira P, Vilanova M, Coimbra MA (2015) Structure–function relationships of immunostimulatory polysaccharides: a review. Carbohydr Polym 132:378–396. https://doi.org/10.1016/j.carbpol.2015.05.079

    Article  CAS  PubMed  Google Scholar 

  7. Zhao G, Kan J, Li Z, Chen Z (2005) Characterization and immunostimulatory activity of an (1 → 6)-aD-glucan from the root of Ipomoea batatas. Int Immunopharmacol 5:1436–1445. https://doi.org/10.1016/j.intimp.2005.03.012

    Article  CAS  PubMed  Google Scholar 

  8. Nosáľová G, Prisenžňáková L, Paulovičová E, Capek P, Matulová M, Navarini L, Liverani FS (2011) Antitussive and immunomodulating activities of instant coffee arabinogalactan-protein. Int J Biol Macromol 49:493–497. https://doi.org/10.1016/j.ijbiomac.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  9. Borowitzka MA (1990) The mass culture of Dunaliella salina. In: Regional workshop on the culture and utilization of seaweeds, Cebu City (Philippines), 27–31 Aug 1990

  10. de Morais MG, Vaz BdS, de Morais EG, Costa JAV (2015) Biologically active metabolites synthesized by microalgae. Biomed Res Int. https://doi.org/10.1155/2015/835761

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bobrov Z, Tracton I, Taunton K, Mathews M (2008) Effectiveness of whole dried Dunaliella salina marine microalgae in the chelating and detoxification of toxic minerals and heavy metals. J Altern Complement Med 14:S8–S9

    Google Scholar 

  12. Ben-Amotz A (1980) Glycerol production in the alga Dunaliella. In: Pietro AS (ed) Biochemical and photosynthetic aspects of energy production. Academia Press Inc, New York, pp 191–208

    Chapter  Google Scholar 

  13. Ben-Amotz A (1995) New mode of Dunaliella biotechnology: two-phase growth for β-carotene production. J Appl Phycol 7:65–68

    Article  CAS  Google Scholar 

  14. Mishra A, Jha B (2009) Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresour Technol 100:3382–3386. https://doi.org/10.1016/j.biortech.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  15. Dai J, Wu Y, Chen S-w, Zhu S, Yin H-p, Wang M, Tang J (2010) Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohydr Polym 82:629–635. https://doi.org/10.1016/j.carbpol.2010.05.029

    Article  CAS  Google Scholar 

  16. Singh P, Baranwal M, Reddy SM (2016) Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress. Pharm Biol 54:2269–2275. https://doi.org/10.3109/13880209.2016.1153660

    Article  CAS  PubMed  Google Scholar 

  17. Starr RC (1987) UTEX-The culture collection of algae at the University of Texas at Austin. J Phycol 23:1–47

    Article  Google Scholar 

  18. Link AJ, LaBaer J (2011) Trichloroacetic acid (TCA) precipitation of proteins. Cold Spring Harbor Protoc 2011:pdb. prot5651

    Google Scholar 

  19. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 339:69–72. https://doi.org/10.1016/j.ab.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  21. Aziz MA (2015) Qualitative phytochemical screening and evaluation of anti-inflammatory, analgesic and antipyretic activities of Microcos paniculata barks and fruits. J Integr Med 13:173–184. https://doi.org/10.1016/S2095-4964(15)60179-0

    Article  PubMed  Google Scholar 

  22. Andriamanantoanina H, Chambat G, Rinaudo M (2007) Fractionation of extracted Madagascan Gracilaria corticata polysaccharides: structure and properties. Carbohydr Polym 68:77–88. https://doi.org/10.1016/j.carbpol.2006.07.023

    Article  CAS  Google Scholar 

  23. Lohia N, Baranwal M (2017) Immune response of highly conserved influenza A virus matrix 1 peptides. Microbiol Immunol 61:225–231. https://doi.org/10.1111/1348-0421.12485

    Article  CAS  PubMed  Google Scholar 

  24. Vasundhara M, Baranwal M, Kumar A (2016) Fusarium tricinctum, an endophytic fungus exhibits cell growth inhibition and antioxidant activity. Indian J Microbiol 56:433–438. https://doi.org/10.1007/s12088-016-0600-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pandey R, Maurya R, Singh G, Sathiamoorthy B, Naik S (2005) Immunosuppressive properties of flavonoids isolated from Boerhaavia diffusa Linn. Int Immunopharmacol 5:541–553. https://doi.org/10.1016/j.intimp.2004.11.001

    Article  CAS  PubMed  Google Scholar 

  26. Guo X, Wang X, Liu J (2016) Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation. Sci Rep 6:28391. https://doi.org/10.1038/srep28391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ben-Amotz A, Avron M (1989) The biotechnology of mass culturing Dunaliella for products of commercial interest. Algal Cyanobacterial Biotechnol 91–114

  28. Ray B, Lahaye M (1995) Cell-wall polysaccharides from the marine green alga Ulva “rigida”(Ulvales, Chlorophyta). Chemical structure of ulvan. Carbohydr Res 274:313–318. https://doi.org/10.1016/0008-6215(95)00407-6

    Article  CAS  Google Scholar 

  29. Zhang L, Koyyalamudi SR, Jeong SC, Reddy N, Bailey T, Longvah T (2013) Immunomodulatory activities of polysaccharides isolated from Taxillus chinensis and Uncaria rhyncophylla. Carbohydr Polym 98:1458–1465. https://doi.org/10.1016/j.carbpol.2013.07.060

    Article  CAS  PubMed  Google Scholar 

  30. Xu X, Tong W, Lei Y, Yao S (2007) Separation and purification of extracellular polysaccharides from Dunaliella salina. J Food Sci Biotechnol 26:28–33

    Google Scholar 

  31. Idriss HT, Naismith JH (2000) TNFα and the TNF receptor superfamily: structure-function relationship (s). Microsc Res Tech 50:184–195. https://doi.org/10.1002/1097-0029(20000801)50:3%3c184:AID-JEMT2%3e3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  32. Maspi N, Abdoli A, Ghaffarifar F (2016) Pro-and anti-inflammatory cytokines in cutaneous leishmaniasis: a review. Pathog Glob Health 110:247–260. https://doi.org/10.1080/20477724.2016.1232042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schoenborn JR, Wilson CB (2007) Regulation of interferon-γ during innate and adaptive immune responses. Adv Immunol 96:41–101. https://doi.org/10.1016/S0065-2776(07)96002-2

    Article  CAS  PubMed  Google Scholar 

  34. Huber S, Schramm C (2006) TGF-beta and CD4+ CD25+ regulatory T cells. Front Biosci 11:1014–1023

    Article  CAS  PubMed  Google Scholar 

  35. Li M, Yan YX, Yu QT, Deng Y, Wu DT, Wang Y, Ge YZ, Li SP, Zhao J (2017) Comparison of immunomodulatory effects of fresh garlic and black garlic polysaccharides on RAW 264.7 Macrophages. J Food Sci 82:765–771. https://doi.org/10.1111/1750-3841.13589

    Article  CAS  PubMed  Google Scholar 

  36. Wu J, Li M, Liu L, An Q, Zhang J, Zhang J, Li M, Duan W, Liu D, Li Z (2013) Nitric oxide and interleukins are involved in cell proliferation of RAW 264. 7 macrophages activated by viili exopolysaccharides. Inflammation 36:954–961. https://doi.org/10.1007/s10753-013-9626-y

    Article  CAS  PubMed  Google Scholar 

  37. Chang C-Y, Tucci M, Baker RC (2000) Lipopolysaccharide-stimulated nitric oxide production and inhibition of cell proliferation is antagonized by ethanol in a clonal macrophage cell line. Alcohol 20:37–43. https://doi.org/10.1016/S0741-8329(99)00054-3

    Article  CAS  PubMed  Google Scholar 

  38. Moore RN, Steeg PS, Männel DN, Mergenhagen SE (1980) Role of lipopolysaccharide in regulating colony-stimulating factor-dependent macrophage proliferation in vitro. Infect Immun 30:797–804

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhuang JC, Wogan GN (1997) Growth and viability of macrophages continuously stimulated to produce nitric oxide. Proc Natl Acad Sci 94:11875–11880. https://doi.org/10.1073/pnas.94.22.11875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu L, Cao J, Chen G, Xu Y, Lu J, Fang F, Chen K (2016) Anti-tumor and immunomodulatory activities of an exopolysaccharide from Rhizopus nigricans on CT26 tumor-bearing mice. Int Immunopharmacol 36:218–224. https://doi.org/10.1016/j.intimp.2016.04.033

    Article  CAS  PubMed  Google Scholar 

  41. Shin JS, Jung JY, Lee SG, Shin KS, Rhee YK, Lee MK, Hong HD, Lee KT (2016) Exopolysaccharide fraction from Pediococcus pentosaceus KFT 18 induces immunostimulatory activity in macrophages and immunosuppressed mice. J Appl Microbiol 120:1390–1402. https://doi.org/10.1111/jam.13099

    Article  CAS  PubMed  Google Scholar 

  42. Mishra A, Kavita K, Jha B (2011) Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydr Polym 83:852–857. https://doi.org/10.1016/j.biortech.2009.02.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Dr. M. Krishnamohan, Birla Institute of Scientific Research, Jaipur, India for providing the culture of Dunaliella salina and Dr. Akshey Jain from Nitin Nursing Home and Dr. Vandana Goyal, from Rajendra Hospital, Patiala for providing us the blood needed for carrying out the experiments. The authors also would like acknowledge Mr. Anoop Patiyal from SAIF, Punjab University, Chandigarh for mass spectroscopic analysis.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Baranwal.

Ethics declarations

Conflict of interest

No competing financial interests exist.

Informed Consent

The informed consent was given by all the donors for the experiments.

Research Involving Human Participants and/or Animals

The study obtained the approval from the institutional ethical committee (IEC).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 106 kb)

Supplementary material 2 (DOCX 305 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, M., Baranwal, M., Pandey, S.K. et al. Hetero-Polysaccharides Secreted from Dunaliella salina Exhibit Immunomodulatory Activity Against Peripheral Blood Mononuclear Cells and RAW 264.7 Macrophages. Indian J Microbiol 59, 428–435 (2019). https://doi.org/10.1007/s12088-019-00818-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-019-00818-w

Keywords

Navigation