Skip to main content

Advertisement

Log in

Inference of Cellular Immune Environments in Sputum and Peripheral Blood Associated with Acute Exacerbations of COPD

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death in the United States, with high associated costs. Most of the cost burden results from acute exacerbations of COPD (AE-COPD), events associated with heightened symptoms and mortality. Cellular mechanisms underlying AE-COPD are poorly understood, likely because they arise from dysregulation of complex immune networks across multiple tissue compartments.

Methods

To gain systems-level insight into cellular environments relevant to exacerbation, we applied data-driven modeling approaches to measurements of immune factors (cytokines and flow cytometry) measured previously in two different human tissue environments (sputum and peripheral blood) during the stable and exacerbated state.

Results

Using partial least squares discriminant analysis, we identified a unique signature of cytokines in serum that differentiated stable and AE-COPD better than individual measurements. Furthermore, we found that models integrating data across tissue compartments (serum and sputum) trended towards being more accurate. The resulting paracrine signature defining AE-COPD events combined elevations of proteins associated with cell adhesion (sVCAM-1, sICAM-1) and increased levels of neutrophils and dendritic cells in blood with elevated chemoattractants (IP-10 and MCP-2) in sputum.

Conclusions

Our results supported a new hypothesis that AE-COPD is driven by immune cell trafficking into the lung, which requires expression of cell adhesion molecules and raised levels of innate immune cells in blood, with parallel upregulated expression of specific chemokines in pulmonary tissue. Overall, this work serves as a proof-of-concept for using data-driven modeling approaches to generate new insights into cellular processes involved in complex pulmonary diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Aaron, C. P., J. E. Schwartz, S. J. Bielinski, E. A. Hoffman, J. H. M. Austin, E. C. Oelsner, K. M. Donohue, R. Kalhan, C. Berardi, J. D. Kaufman, D. R. Jacobs, R. P. Tracy, and R. G. Barr. Intercellular adhesion molecule 1 and progression of percent emphysema: The MESA Lung Study. Resp. Med. 109:255–264, 2015.

    Article  Google Scholar 

  2. Agouridakis, P., D. Kyriakou, M. G. Alexandrakis, A. Prekates, K. Perisinakis, N. Karkavitsas, and D. Bouros. The predictive role of serum and bronchoalveolar lavage cytokines and adhesion molecules for acute respiratory distress syndrome development and outcome. Resp. Res. 3:25–25, 2002.

    Article  Google Scholar 

  3. Agustí, A., L. D. Edwards, S. I. Rennard, W. MacNee, R. Tal-Singer, B. E. Miller, J. Vestbo, D. A. Lomas, P. M. A. Calverley, E. Wouters, C. Crim, J. C. Yates, E. K. Silverman, H. O. Coxson, P. Bakke, R. J. Mayer, B. Celli, and ECLIPSE Investigators. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS ONE 7:e37483–e37483, 2012.

    Article  Google Scholar 

  4. Albert, R. K., J. Connett, W. C. Bailey, R. Casaburi, J. A. D. Cooper, G. J. Criner, J. L. Curtis, M. T. Dransfield, M. K. Han, S. C. Lazarus, B. Make, N. Marchetti, F. J. Martinez, N. E. Madinger, C. McEvoy, D. E. Niewoehner, J. Porsasz, C. S. Price, J. Reilly, P. D. Scanlon, F. C. Sciurba, S. M. Scharf, G. R. Washko, P. G. Woodruff, N. R. Anthonisen, and C. C. R. Network. Azithromycin for prevention of exacerbations of COPD. New Engl. J. Med. 365:689–698, 2011.

    Article  Google Scholar 

  5. Andelid, K., A. Andersson, S. Yoshihara, C. Âhrén, P. Jirholt, A. Ekberg-Jansson, and A. Lindén. Systemic signs of neutrophil mobilization during clinically stable periods and during exacerbations in smokers with obstructive pulmonary disease. Int. J. Chronic Obstr. 10:1253–1263, 2015.

    Google Scholar 

  6. Arnold, K. B., A. Burgener, K. Birse, L. Romas, L. J. Dunphy, K. Shahabi, M. Abou, G. R. Westmacott, S. McCorrister, J. Kwatampora, B. Nyanga, J. Kimani, L. Masson, L. J. Liebenberg, S. S. Abdool Karim, J.-A. S. Passmore, D. A. Lauffenburger, R. Kaul, and L. R. McKinnon. Increased levels of inflammatory cytokines in the female reproductive tract are associated with altered expression of proteases, mucosal barrier proteins, and an influx of HIV-susceptible target cells. Mucosal Immunol. 9:194–205, 2016.

    Article  Google Scholar 

  7. Bafadhel, M., S. McKenna, S. Terry, V. Mistry, C. Reid, P. Haldar, M. McCormick, K. Haldar, T. Kebadze, A. Duvoix, K. Lindblad, H. Patel, P. Rugman, P. Dodson, M. Jenkins, M. Saunders, P. Newbold, R. H. Green, P. Venge, D. A. Lomas, M. R. Barer, S. L. Johnston, I. D. Pavord, and C. E. Brightling. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am. J. Resp. Crit. Care 184:662–671, 2011.

    Article  Google Scholar 

  8. Barnes, P. J. The cytokine network in chronic obstructive pulmonary disease. Am. J. Resp. Cell Mol. 41:631–638, 2009.

    Article  Google Scholar 

  9. Cane, J. L., B. Mallia-Millanes, D. L. Forrester, A. J. Knox, C. E. Bolton, and S. R. Johnson. Matrix metalloproteinases -8 and -9 in the airways, blood and urine during exacerbations of COPD. COPD 13:26–34, 2016.

    Article  Google Scholar 

  10. Chakrabarti, S., and K. D. Patel. Regulation of matrix metalloproteinase-9 release from IL-8-stimulated human neutrophils. J. Leukocyte Biol. 78:279–288, 2005.

    Article  Google Scholar 

  11. Chang, C., Z. Guo, N. Shen, B. He, W. Yao, H. Zhu, and J. Zhao. Dynamics of inflammation resolution and symptom recovery during AECOPD treatment. Sci. Rep. 4:5516–5516, 2014.

    Article  Google Scholar 

  12. Chen, Y.-W. R., J. M. Leung, and D. D. Sin. A systematic review of diagnostic biomarkers of COPD exacerbation. PLoS ONE 11:e0158843–e0158843, 2016.

    Article  Google Scholar 

  13. Cosio, M. G., M. Saetta, and A. Agustí. Immunologic aspects of chronic obstructive pulmonary disease. New Engl. J. Med. 360:2445–2454, 2009.

    Article  Google Scholar 

  14. Curtis, J. L., C. M. Freeman, and J. C. Hogg. The immunopathogenesis of chronic obstructive pulmonary disease: Insights from recent research. Proc. Am. Thorac. Soc. 4:512–521, 2007.

    Article  Google Scholar 

  15. Dentener, M. A., E. C. Creutzberg, A. M. Schols, A. Mantovani, C. van’t Veer, W. A. Buurman, and E. F. Wouters. Systemic anti-inflammatory mediators in COPD: increase in soluble interleukin 1 receptor II during treatment of exacerbations. Thorax 56:721–726, 2001.

    Article  Google Scholar 

  16. Dinarello, C. A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117:3720–3732, 2011.

    Article  Google Scholar 

  17. Douni, E., and G. Kollias. A critical role of the p75 tumor necrosis factor receptor (p75TNF-R) in organ inflammation independent of TNF, lymphotoxin alpha, or the p55TNF-R. J. Exp. Med. 188:1343–1352, 1998.

    Article  Google Scholar 

  18. El-Deek, S. E., H. A. Makhlouf, T. H. Saleem, M. A. Mandour, and N. A. Mohamed. Surfactant protein D, soluble intercellular adhesion molecule-1 and high-sensitivity C-reactive protein as biomarkers of chronic obstructive pulmonary disease. Med. Prin. Pract. 22:469–474, 2013.

    Article  Google Scholar 

  19. Ford, E. S., L. B. Murphy, O. Khavjou, W. H. Giles, J. B. Holt, and J. B. Croft. Total and state-specific medical and absenteeism costs of COPD among adults aged ≥ 18 years in the United States for 2010 and projections through 2020. Chest 147:31–45, 2015.

    Article  Google Scholar 

  20. Freeman, C. M., and J. L. Curtis. Lung dendritic cells: shaping immune responses throughout COPD progression. Am. J. Resp. Cell Mol. 56:152–159, 2017.

    Google Scholar 

  21. Freeman, C. M., F. J. Martinez, M. K. Han, T. M. Ames, S. W. Chensue, J. C. Todt, D. A. Arenberg, C. A. Meldrum, C. Getty, L. McCloskey, and J. L. Curtis. Lung dendritic cell expression of maturation molecules increases with worsening chronic obstructive pulmonary disease. Am. J. Resp. Crit. Care 180:1179–1188, 2009.

    Article  Google Scholar 

  22. Freeman, C. M., C. H. Martinez, J. C. Todt, F. J. Martinez, M. K. Han, D. L. Thompson, L. McCloskey, and J. L. Curtis. Acute exacerbations of chronic obstructive pulmonary disease are associated with decreased CD4+ & CD8+ T cells and increased growth & differentiation factor-15 (GDF-15) in peripheral blood. Resp. Res. 16:94–94, 2015.

    Article  Google Scholar 

  23. Gerritsen, W. B. M., J. Asin, P. Zanen, J. M. M. van den Bosch, and F. J. L. M. Haas. Markers of inflammation and oxidative stress in exacerbated chronic obstructive pulmonary disease patients. Resp. Med. 99:84–90, 2005.

    Article  Google Scholar 

  24. Groenewegen, K. H., M. A. Dentener, and E. F. M. Wouters. Longitudinal follow-up of systemic inflammation after acute exacerbations of COPD. Resp. Med. 101:2409–2415, 2007.

    Article  Google Scholar 

  25. Halpin, D. M. G., M. Miravitlles, N. Metzdorf, and B. Celli. Impact and prevention of severe exacerbations of COPD: a review of the evidence. Int. J. Chronic. Obstr. 2891–2908:2017, 2017.

    Google Scholar 

  26. Hollander, C., B. Sitkauskiene, R. Sakalauskas, U. Westin, and S. M. Janciauskiene. Serum and bronchial lavage fluid concentrations of IL-8, SLPI, sCD14 and sICAM-1 in patients with COPD and asthma. Resp. Med. 101:1947–1953, 2007.

    Article  Google Scholar 

  27. Hunter, C. A., and S. A. Jones. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16:448–457, 2015.

    Article  Google Scholar 

  28. Hurst, J. R., G. C. Donaldson, W. R. Perera, T. M. A. Wilkinson, J. A. Bilello, G. W. Hagan, R. S. Vessey, and J. A. Wedzicha. Use of plasma biomarkers at exacerbation of chronic obstructive pulmonary disease. Am. J. Resp. Crit. Care 174:867–874, 2006.

    Article  Google Scholar 

  29. Johannesdottir, S. A., C. F. Christiansen, M. B. Johansen, M. Olsen, X. Xu, J. M. Parker, N. A. Molfino, T. L. Lash, and J. P. Fryzek. Hospitalization with acute exacerbation of chronic obstructive pulmonary disease and associated health resource utilization: a population-based Danish cohort study. J. Med. Econ. 16:897–906, 2013.

    Article  Google Scholar 

  30. Karadag, F., A. B. Karul, O. Cildag, M. Yilmaz, and H. Ozcan. Biomarkers of systemic inflammation in stable and exacerbation phases of COPD. Lung 186:403–409, 2008.

    Article  Google Scholar 

  31. Kochanek, K. D., S. Murphy, J. Xu, and E. Arias. Mortality in the United States, 2016. NCHS Data Brief 1–8, 2017.

  32. Krommidas, G., K. Kostikas, G. Papatheodorou, A. Koutsokera, K. I. Gourgoulianis, C. Roussos, N. G. Koulouris, and S. Loukides. Plasma leptin and adiponectin in COPD exacerbations: associations with inflammatory biomarkers. Resp. Med. 104:40–46, 2010.

    Article  Google Scholar 

  33. Kwiatkowska, S., K. Noweta, M. Zieba, D. Nowak, and P. Bialasiewicz. Enhanced exhalation of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in patients with COPD exacerbation: a prospective study. Respiration 84:231–241, 2012.

    Article  Google Scholar 

  34. Lau, K. S., A. M. Juchheim, K. R. Cavaliere, S. R. Philips, D. A. Lauffenburger, and K. M. Haigis. In vivo systems analysis identifies spatial and temporal aspects of the modulation of TNF-α-induced apoptosis and proliferation by MAPKs. Sci. Signal. 4:ra16, 2011.

    Google Scholar 

  35. Leeuwenberg, J. F., E. F. Smeets, J. J. Neefjes, M. A. Shaffer, T. Cinek, T. M. Jeunhomme, T. J. Ahern, and W. A. Buurman. E-selectin and intercellular adhesion molecule-1 are released by activated human endothelial cells in vitro. Immunology 77:543–549, 1992.

    Google Scholar 

  36. Liu, M., S. Guo, J. M. Hibbert, V. Jain, N. Singh, N. O. Wilson, and J. K. Stiles. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev. 22:121–130, 2011.

    Google Scholar 

  37. Martinez, F. J., P. M. A. Calverley, U.-M. Goehring, M. Brose, L. M. Fabbri, and K. F. Rabe. Effect of roflumilast on exacerbations in patients with severe chronic obstructive pulmonary disease uncontrolled by combination therapy (REACT): a multicentre randomised controlled trial. Lancet 385:857–866, 2015.

    Article  Google Scholar 

  38. Masciantonio, M. G., C. K. S. Lee, V. Arpino, S. Mehta, and S. E. Gill. The balance between metalloproteinases and TIMPs. Prog. Mol. Biol. Transl. Sci. 147:101–131, 2017.

    Article  Google Scholar 

  39. McCubbrey, A. L., J. Sonstein, T. M. Ames, C. M. Freeman, and J. L. Curtis. Glucocorticoids relieve collectin-driven suppression of apoptotic cell uptake in murine alveolar macrophages through downregulation of SIRPα. J. Immunol. 189:112–119, 2012.

    Article  Google Scholar 

  40. Miller, B. E., R. Tal-Singer, S. I. Rennard, A. Furtwaengler, N. Leidy, M. Lowings, U. J. Martin, T. R. Martin, D. D. Merrill, J. Snyder, J. Walsh, and D. M. Mannino. Plasma fibrinogen qualification as a drug development tool in chronic obstructive pulmonary disease. Perspective of the chronic obstructive pulmonary disease biomarker qualification consortium. Am. J. Resp. Crit. Care 193:607–613, 2016.

    Article  Google Scholar 

  41. Mishra, A., Y. Guo, L. Zhang, S. More, T. Weng, N. R. Chintagari, C. Huang, Y. Liang, S. Pushparaj, D. Gou, M. Breshears, and L. Liu. A critical role for P2X7 receptor-induced VCAM-1 shedding and neutrophil infiltration during acute lung injury. J. Immunol. 197:2828–2837, 2016.

    Article  Google Scholar 

  42. Müller, B., and M. Tamm. Biomarkers in acute exacerbation of chronic obstructive pulmonary disease: among the blind, the one-eyed is king. Am. J. Resp. Crit. Care 174:848–849, 2006.

    Article  Google Scholar 

  43. Navratilova, Z., V. Kolek, and M. Petrek. Matrix metalloproteinases and their inhibitors in chronic obstructive pulmonary disease. Arch. Immunol. Ther. Exerc. 64:177–193, 2016.

    Article  Google Scholar 

  44. O’Dwyer, D. N., K. C. Norman, M. Xia, Y. Huang, S. J. Gurczynski, S. L. Ashley, E. S. White, K. R. Flaherty, F. J. Martinez, S. Murray, I. Noth, K. B. Arnold, and B. B. Moore. The peripheral blood proteome signature of idiopathic pulmonary fibrosis is distinct from normal and is associated with novel immunological processes. Sci. Rep. 7:46560–46560, 2017.

    Article  Google Scholar 

  45. Oba, Y., and N. A. Lone. Efficacy and safety of roflumilast in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ther. Adv. Respir. Dis. 7:13–24, 2013.

    Article  Google Scholar 

  46. Papi, A., C. M. Bellettato, F. Braccioni, M. Romagnoli, P. Casolari, G. Caramori, L. M. Fabbri, and S. L. Johnston. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am. J. Resp. Crit. Care 173:1114–1121, 2006.

    Article  Google Scholar 

  47. Peters, V. A., J. J. Joesting, and G. G. Freund. IL-1 receptor 2 (IL-1R2) and its role in immune regulation. Brain Behav. Immun. 32:1–8, 2013.

    Article  Google Scholar 

  48. Roche, N., M. Zureik, D. Soussan, F. Neukirch, D. Perrotin, and B. S. C. Urgence and Investigators. Predictors of outcomes in COPD exacerbation cases presenting to the emergency department. Eur. Respir. J. 32:953–961, 2008.

    Article  Google Scholar 

  49. Rodriguez-Roisin, R. Toward a consensus definition for COPD exacerbations. Chest 117:398S–401S, 2000.

    Article  Google Scholar 

  50. Röpcke, S., O. Holz, G. Lauer, M. Müller, S. Rittinghausen, P. Ernst, G. Lahu, M. Elmlinger, N. Krug, and J. M. Hohlfeld. Repeatability of and relationship between potential COPD biomarkers in bronchoalveolar lavage, bronchial biopsies, serum, and induced sputum. PLoS ONE 7:e46207–e46207, 2012.

    Article  Google Scholar 

  51. Santos, S., A. Marín, J. Serra-Batlles, D. de la Rosa, I. Solanes, X. Pomares, M. López-Sánchez, M. Muñoz-Esquerre, and M. Miravitlles. Treatment of patients with COPD and recurrent exacerbations: the role of infection and inflammation. Int. J. Chronic Obstr. 11:515–525, 2016.

    Article  Google Scholar 

  52. Thomsen, M., T. S. Ingebrigtsen, J. L. Marott, M. Dahl, P. Lange, J. Vestbo, and B. G. Nordestgaard. Inflammatory biomarkers and exacerbations in chronic obstructive pulmonary disease. JAMA 309:2353–2361, 2013.

    Article  Google Scholar 

  53. Toy, E. L., K. F. Gallagher, E. L. Stanley, A. R. Swensen, and M. S. Duh. The economic impact of exacerbations of chronic obstructive pulmonary disease and exacerbation definition: a review. COPD 7:214–228, 2010.

    Article  Google Scholar 

  54. Vaitkus, M., S. Lavinskiene, D. Barkauskiene, K. Bieksiene, J. Jeroch, and R. Sakalauskas. Reactive oxygen species in peripheral blood and sputum neutrophils during bacterial and nonbacterial acute exacerbation of chronic obstructive pulmonary disease. Inflammation 36:1485–1493, 2013.

    Article  Google Scholar 

  55. Wedzicha, J. A., D. Banerji, K. R. Chapman, J. Vestbo, N. Roche, R. T. Ayers, C. Thach, R. Fogel, F. Patalano, C. F. Vogelmeier, and F. Investigators. Indacaterol-glycopyrronium versus salmeterol-fluticasone for COPD. New Engl. J. Med. 374:2222–2234, 2016.

    Article  Google Scholar 

  56. Witkowska, A. M., and M. H. Borawska. Soluble intercellular adhesion molecule-1 (sICAM-1): an overview. Eur. Cytokine Netw. 15:91–98, 2004.

    Google Scholar 

  57. Wold, S., E. Johansson, and M. Cocchi. PLS-partial least squares projections to latent structures. In: 3D QSAR in Drug Design: Theory Methods and Applications, edited by H. Kubinyi. Dordrecht: Escom, 1993, pp. 523–550.

    Google Scholar 

  58. Xu, X., P. L. Jackson, S. Tanner, M. T. Hardison, M. A. Roda, J. E. Blalock, and A. Gaggar. A self-propagating matrix metalloprotease-9 (MMP-9) dependent cycle of chronic neutrophilic inflammation. PLoS ONE 6:e15781, 2011.

    Article  Google Scholar 

  59. Yung S. C. and J. M. Farber. Chemokines. edited by A. J. KastinElsevier, pp. 656–663, 2013.

Download references

Acknowledgments

The authors would like to thank Lisa McCloskey, RRT, Christi Getty, RRT, and Candace Flaherty, RRT for interactions with subjects in the original study.

Funding

This work was supported by NIH R01 HL144849-01 (to K.B.A.). K.C.N. was supported by a Department of Education Graduate Assistance in Areas of National Need (GAANN) Fellowship awarded to the biomedical engineering department at the University of Michigan (PR Award Number: P200A150170). C.M.F. was supported by Merit Review Awards I01 CX001553 from the Department of Veterans Affairs and by MedImmune, Ltd. M.K.H. reports a grant from the National Heart, Lung and Blood Institute. F.J.M. has received grants from the National Institute of Health. J.L.C. was supported by Merit Review Awards I01 CX000911 from the Department of Veterans Affairs and by MedImmune, Ltd.

Conflict of interest

K.C.N., C.M.F., N.S.B, J.L.C. and K.B.A. reported no conflicts of interest. M.K.H. reports consultant arrangements with GlaxoSmithKline, Boehringer Ingelheim, Novartis, Sunovion, and AstraZeneca. F.J.M. has received personal fees from Forest, Janssen, GlaxoSmithKline, Nycomed/Takeda, Amgen, AstraZeneca, Boehringer Ingelheim, Ikaria/Bellerophon, Genentech, Novartis, Pearl, Pfizer, Roche, Sunovion, Theravance, Axon, CME Incite, California Society for Allergy and Immunology, Annenberg, Integritas, InThough, Miller Medical, National Association for Continuing Education, Paradigm, Peer Voice, UpToDate, Haymarket Communications, Western Society of Allergy and Immunology, Informa, Bioscale, Unity Biotechnology, ConCert, Lucid, Methodist Hospital, Prime, WebMD, Bayer, Ikaria, Kadmon, Vercyte, American Thoracic Society, Academic CME, Falco, Axon Communication, Johnson & Johnson, Clarion, Continuing Education, Potomac, Afferent, and Adept; and has collected nonfinancial support from Boehringer Ingelheim, Centocor, Gilead, and Biogen/Stromedix; and declares other interests with Mereo, Boehringering Ingelheim, and Centocor.

Ethical Standards

All human subjects research was carried out in accordance with the Declaration of Helsinki and were approved by the Institutional Review Boards of the Veterans’ Affairs Ann Arbor Healthcare System (VAAHS) and of the University of Michigan Health System (UMHS).

Research Involved in Human or animal rights

No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeffrey L. Curtis or Kelly B. Arnold.

Additional information

Associate Editor William H. Guilford oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norman, K.C., Freeman, C.M., Bidthanapally, N.S. et al. Inference of Cellular Immune Environments in Sputum and Peripheral Blood Associated with Acute Exacerbations of COPD. Cel. Mol. Bioeng. 12, 165–177 (2019). https://doi.org/10.1007/s12195-019-00567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-019-00567-2

Keywords

Navigation