Skip to main content

Advertisement

Log in

Molecular characterization and complete genome of alstroemeria mosaic virus (AlMV)

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

A Correction to this article was published on 27 November 2019

This article has been updated

Abstract

Even though alstroemeria mosaic virus (AlMV) is one of the most important viruses affecting alstroemeria plants, its genome is only partially available in public sequence databases. High throughput sequencing (HTS) of RNA from alstroemeria plants with symptoms of mosaic and streaking, collected in Lasso-Ecuador, indicated the presence of AlMV and lily symptomless virus. In this study, we aimed to assemble and characterize the complete genome sequence of AlMV. Reads from Illumina sequencing of ribosomal RNA-depleted total RNA were assembled into contigs that were mapped to the sunflower chlorotic mottle virus genome, revealing the 9974 bp complete genome sequence of AlMV. Multiple sequence alignment of the AlMV polyprotein with close homologs allowed the identification of ten mature proteins P1, HC-Pro, P3, 6K1, CI, 6K2, NIa-VPg, NIa-Pro, NIb and CP. Furthermore, several potyvirus motifs were identified in the AlMV polyprotein including those related to potyvirus aphid transmission 334KMTC337, 592PTK594 and 2800DAG2802. Phylogenetic analysis based in the polyprotein showed that AlMV belongs to the potato virus Y clade and its closest relative is sunflower ring blotch virus. This study describes the first complete genome of AlMV and its placement within the genus Potyvirus, providing valuable information for future studies on this economically important virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 27 November 2019

    The original version of this article unfortunately contained an error in the length of AIMV genome sequence.

References

  1. Hans G (2018) Alstroemerias (Alstroemeria hybrids) as a tunnel-grown cut flower crop. National Cut Flower Centre-AHDB Horticulture Information Sheet 10

  2. Bellardi MG, Vibio M, Bertaccini A (1992) Natural occurrence of freesia mosaic virus in Alstroemeria sp. Plant Dis 76:643

    Article  Google Scholar 

  3. Brunt AA, Phillips S (1981) Alstroemeria. Ann. Rep. Glasshouse Crops Research Institute for 1979, Littlehampton

  4. Hassani-Mehraban A, Botermans M, Verhoeven JT, Meekes E, Saaijer J, Peters D, Goldbach R, Kormelink R (2010) A distinct tospovirus causing necrotic streak on Alstroemeria sp. in Colombia. Arch Virol 155:423–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hassani-Mehraban A, Dullemans AM, Verhoeven JTJ, Roenhorst JW, Peters P, van der Vlugt RAA, Kormelink R (2019) Alstroemeria yellow spot virus (AYSV): a new orthotospovirus species within a growing Eurasian clade. Arch Virol 164:117–126

    Article  CAS  PubMed  Google Scholar 

  6. Spence NJ, Mills PR, Barbara DJ (2000) A survey of viruses of Alstroemeria in the UK and the characterisation of carlaviruses infecting Alstroemeria. Eur J Plant Pathol 106:843–847

    Article  Google Scholar 

  7. Van der Vlugt RAA, Bouwen I (1997) Identification of potyviruses infecting Alstroemeria. In: Dehne H-WAG, Diekmann M, Frahm F, Mauler-Machnik A, Halteren P (eds) Diagnosis and identification of plant pathogens. Kluwer Academic Publishers, Dordrecht, pp 469–471

    Google Scholar 

  8. Van der Vlugt RAA, Bouwen I (2002) Alstroemeria streak virus is an isolate of Alstroemeria mosaic potyvirus. Phytomed Dtsch Phytomed Ges Sonderh 1:31

    Google Scholar 

  9. Fuji S-I, Mochizuki N, Fujinaga M, Ikeda M, Shinoda K, Uematsu S, Furuya H, Naito H, Fukumoto F (2007) Incidence of viruses in Alstroemeria plants cultivated in Japan and characterization of Broad bean wilt virus-2, Cucumber mosaic virus and Youcai mosaic virus. J Gen Plant Pathol 73:216–221

    Article  Google Scholar 

  10. De Blank CM, Van Zaayen A, Bouwen I (1994) Towards a reliable detection of Alstroemeria mosaic virus. Acta Hortic 377:199–208

    Article  Google Scholar 

  11. Phillips S, Brunt AA (1986) Four viruses of alstroemeria in Britain. Acta Hortic 177:227–234

    Article  Google Scholar 

  12. Yasuda S, Saka K, Natsuaki KT (1998) Characterization and serodiagnosis of alstroemeria mosaic potyvirus. Jpn J Trop Agric 42:85–93

    Google Scholar 

  13. Hakkaart FA, Versluijs JMA (1988) Virus elimination by meristem-tip culture from a range of Alstroemeria cultivars. Neth J Plant Pathol 94:49–56

    Article  Google Scholar 

  14. Fuji S, Terami F, Furuya H, Naito H, Fukumoto F (2004) Nucleotide sequence of the coat protein genes of Alstroemeria mosaic virus and Amazon lily mosaic virus, a tentative species of genus Potyvirus. Arch Virol 149:1843–1849

    Article  CAS  PubMed  Google Scholar 

  15. Wang CY, Chang YC (2006) First identification of Alstroemeria mosaic virus in Taiwan. Plant Pathol 55:566

    Article  Google Scholar 

  16. Pearson MN, Cohen D, Cowell S et al (2009) A survey of viruses of flower bulbs in New Zealand. 38:305–309

    Google Scholar 

  17. Gutiérrez-Estrada A, Zavaleta-Mejía E, Gaytán-Acuña EA, Herrera-Guadarrama AJ (2000) Virus associated with Alstroemeria in México. Rev Mex Fitopatol 17:97–103

    Google Scholar 

  18. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bushnell B (2014) BBMap: a fast, accurate, splice-aware aligner. Report number: LBNL-7065E, Lawrence Berkeley National Laboratory Berkeley, CA

  20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  22. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Castresana J (2002) GBLOCLKS: selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Version 0.91b. Copyrighted by J. Castresana, EMBL.

  24. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suchard M, Lemey P, Baele G, Ayres D, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol 4:vey016

  26. Chung BY, Miller WA, Atkins JF, Firth AE (2008) An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA 105:5897–5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dujovny G, Sasaya T, Koganesawa H, Usugi T, Shohara K, Lenardon SL (2000) Molecular characterization of a new potyvirus infecting sunflower. Arch Virol 145:2249–2258

    Article  CAS  PubMed  Google Scholar 

  28. Hong Y, Hunt AG (1996) RNA polymerase activity catalyzed by a potyvirus-encoded RNA-dependent RNA polymerase. Virology 226:146–151

    Article  CAS  PubMed  Google Scholar 

  29. Langeveldt SA, Dore J-M, Memelink J, Derks AFLM, van der Vlugt CIM, Asjes CJ, Bol JF (1991) Identification of potyviruses using the polymerase chain reaction with degenerate primers. J Gen Virol 72:1531–1541

    Article  Google Scholar 

  30. Peng YH, Kadoury D, Gal-On A, Huet H, Wang Y, Raccah B (1998) Mutations in the HC-Pro gene of zucchini yellow mosaic potyvirus: effects on aphid transmission and binding to purified virions. J Gen Virol 79:897–904

    Article  CAS  PubMed  Google Scholar 

  31. Riechmann JL, Laín S, García JA (1992) Highlights and prospects of potyvirus molecular biology. J Gen Virol 73:1–16

    Article  CAS  PubMed  Google Scholar 

  32. Rohožková J, Navrátil M (2011) P1 peptidase: a mysterious protein of family Potyviridae. J Biosci 36:189–200

    Article  PubMed  CAS  Google Scholar 

  33. Shiboleth YM, Haronsky E, Leibman D, Arazi T, Wassenegger M, Whitham SA, Gaba V, Gal-On A (2007) The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J Virol 81:13135–13148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Urcuqui-Inchima S, Haenni AL, Bernardi F (2001) Potyvirus proteins: a wealth of functions. Virus Res 74:157–175

    Article  CAS  PubMed  Google Scholar 

  35. Valli A, López-Moya JJ, García JA (2007) Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. J Gen Virol 88:1016–1028

    Article  CAS  PubMed  Google Scholar 

  36. Xiang H, Han Y-H, Han C, Li D, Yu J (2007) Molecular characterization of two Chinese isolates of Beet mosaic virus. Virus Genes 35:795–799

    Article  CAS  PubMed  Google Scholar 

  37. Cabrera-Mederos D, Bejerman N, Trucco V, de Breuil S, Lenardon S, Giolitti F (2017) Complete genome sequence of sunflower ring blotch virus, a new potyvirus infecting sunflower in Argentina. Arch Virol 162:1787–1790

    Article  CAS  PubMed  Google Scholar 

  38. Bellardi MG, Bertaccini A, Betti L (1994) Survey of viruses infecting Alstroemeria in Italy. Acta Hortic 377:73–80

    Article  Google Scholar 

  39. Wylie SJ, Adams M, Chalam C, Kreuze J, López-Moya JJ, Ohshima K, Praveen S, Rabenstein F, Stenger D, Wang A, Zerbini FM, Consortium IR (2017) ICTV virus taxonomy profile: Potyviridae. J Gen Virol 98:352–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Atreya PL, Atreya CD, Pirone TP (1991) Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus. Proc Natl Acad Sci USA 88:7887–7891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Atreya PL, Lopez-Moya JJ, Chu M, Atreya CD, Pirone TP (1995) Mutational analysis of the coat protein N-terminal amino acids involved in potyvirus transmission by aphids. J Gen Virol 76:265–270

    Article  CAS  PubMed  Google Scholar 

  42. Huet H, Gal-On A, Meir E, Lecoq H, Raccah B (1994) Mutations in the helper component protease gene of zucchini yellow mosaic virus affect its ability to mediate aphid transmissibility. J Gen Virol 75:1407–1414

    Article  CAS  PubMed  Google Scholar 

  43. Anindya R, Joseph J, Gowri TDS, Savithri HS (2004) Complete genomic sequence of pepper vein banding virus (PVBV): a distinct member of the genus Potyvirus. Arch Virol 149:625–632

    Article  CAS  PubMed  Google Scholar 

  44. Chen J, Chen JP, Chen JS, Adams MJ (2001) Molecular characterisation of an isolate of Dasheen mosaic virus from Zantedeschia aethiopica in China and comparisons in the genus Potyvirus. Arch Virol 146:1821–1829

    Article  CAS  PubMed  Google Scholar 

  45. Mlotshwa S, Verver J, Sithole-Niang I, Van Kampen T, Van Kammen A, Wellink J (2002) The genomic sequence of cowpea aphid-borne mosaic virus and its similarities with other potyviruses. Arch Virol 147:1043–1052

    Article  CAS  PubMed  Google Scholar 

  46. Domier LL, Latorre IJ, Steinlage TA, McCoppin N, Hartman GL (2003) Variability and transmission by Aphis glycines of North American and Asian Soybean mosaic virus isolates. Arch Virol 148:1925–1941

    Article  CAS  PubMed  Google Scholar 

  47. Ali A, Natsuaki T, Okuda S (2006) The complete nucleotide sequence of a Pakistani isolate of watermelon mosaic virus provides further insights into the taxonomic status in the bean common mosaic virus subgroup. Virus Genes 32:307–311

    Article  CAS  PubMed  Google Scholar 

  48. Bravo E, Calvert LA, Morales FJ (2008) The complete nucleotide sequence of the genomic RNA of bean common mosaic virus strain NL4. Rev Acad Colomb Cienc Exactas Fis Nat 32:37–46

    Google Scholar 

  49. Fukumoto T, Nakamura M, Rikitake M, Iwai H (2012) Molecular characterization and specific detection of two genetically distinguishable strains of East Asian Passiflora virus (EAPV) and their distribution in southern Japan. Virus Genes 44:141–148

    Article  CAS  PubMed  Google Scholar 

  50. Fukumoto T, Nakamura M, Wylie SJ, Chiaki Y, Iwai H (2013) Complete nucleotide sequence of a new isolate of passion fruit woodiness virus from Western Australia. Arch Virol 158:1821–1824

    Article  CAS  PubMed  Google Scholar 

  51. Riska SY, Inudo K, Nakamura M, Fukumoto T, Takushi T, Fuji S-I, Iwai H (2019) East Asian Passiflora distortion virus: a novel potyvirus species causing deformation of passionfruits in Japan. J Gen Plant Pathol 85:221–231

    Article  Google Scholar 

  52. Kraus J, Cleveland S, Putnam ML (2010) A new Potyvirus sp. infects verbena exhibiting leaf mottling symptoms. Plant Dis 94:1132–1136

    Article  PubMed  Google Scholar 

  53. Moodley V, Ibaba JD, Naidoo R, Gubba A (2014) Full-genome analyses of a Potato Virus Y (PVY) isolate infecting pepper (Capsicum annuum L.) in the Republic of South Africa. Virus Genes 49:466–476

    Article  CAS  PubMed  Google Scholar 

  54. Oruetxebarria I, Kekarainen T, Spetz C, Valkonen J (2000) Molecular characterization of Potato virus V genomes from Europe indicates limited spatiotemporal strain differentiation. Phytopathology 90:437–444

    Article  CAS  PubMed  Google Scholar 

  55. Atreya CD, Pirone TP (1993) Mutational analysis of the helper component-proteinase gene of a potyvirus: effects of amino acid substitutions, deletions, and gene replacement on virulence and aphid transmissibility. Proc Natl Acad Sci USA 90:11919–11923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li R, Gao S, Hernandez AG, Wechter WP, Fei Z, Ling KS (2012) Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. PLoS ONE 7:e37127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Orílio AF, Dusi AN, Madeira NR, Inoue-Nagata AK (2009) Characterization of a member of a new Potyvirus species infecting arracacha in Brazil. Arch Virol 154:181–185

    Article  PubMed  CAS  Google Scholar 

  58. Spetz C, Valkonen JPT (2003) Genomic sequence of Wild potato mosaic virus as compared to the genomes of other potyviruses. Arch Virol 148:373–380

    Article  CAS  PubMed  Google Scholar 

  59. Lucinda N, da Rocha WB, Inoue-Nagata AK, Nagata T (2012) Complete genome sequence of pepper yellow mosaic virus, a potyvirus, occurring in Brazil. Arch Virol 157:1397–1401

    Article  CAS  PubMed  Google Scholar 

  60. Seifers DL, Salomon R, Marie-Jeanne V, Alliot B, Signoret P, Haber S, Loboda A, Ens W, Standing KG (2000) Characterization of a novel potyvirus isolated from maize in Israel. Phytopathology 90:505–513

    Article  CAS  PubMed  Google Scholar 

  61. Yu XQ, Lan YF, Wang HY, Liu JL, Zhu XP, Valkonen JPT, Li XD (2007) The complete genomic sequence of Tobacco vein banding mosaic virus and its similarities with other potyviruses. Virus Genes 35:801–806

    Article  PubMed  CAS  Google Scholar 

  62. Hasiów-Jaroszewska B, Fares MA, Elena SF (2014) Molecular evolution of viral multifunctional proteins: the case of Potyvirus HC-pro. J Mol Evol 78:75–86

    Article  PubMed  CAS  Google Scholar 

  63. Revers F, García JA (2015) Molecular biology of potyviruses. Adv Virus Res 92:101–199

    Article  CAS  PubMed  Google Scholar 

  64. Adams MJ, Antoniw JF, Beaudoin F (2005) Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Mol Plant Pathol 6:471–487

    Article  CAS  PubMed  Google Scholar 

  65. Schechter I, Berger A (1968) On the active site of proteases. III. Mapping the active site of papain; specific peptide inhibitors of papain. Biochem Biophys Res Commun 32:898–902

    Article  CAS  PubMed  Google Scholar 

  66. Moury B, Verdin E (2012) Viruses of pepper crops in the Mediterranean basin: a remarkable stasis. Adv Virus Res 84:127–162

    Article  PubMed  Google Scholar 

  67. Orilio AF, Lucinda N, Dusi AN, Nagata T, Inoue-Nagata AK (2013) Complete genome sequence of arracacha mottle virus. Arch Virol 158:291–295

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Nathan Richard Walker for revising and improving our manuscript. All bioinformatics analyses were performed in the Rumiñahui high performance cluster of Universidad de las Fuerzas Armadas-ESPE. Biological samples were collected and sequenced under framework contract MAE–DNB–CM–2017–0071.

Author information

Authors and Affiliations

Authors

Contributions

Conceived the study: FJF. Designed and performed the research: FMY, PG, and FJF. Analyzed data: FMY, and FJF. Curated data: FMY. Wrote the manuscript: FMY, PG. Reviewed the manuscript and supervised the research: FJF. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Francisco Mosquera-Yuqui.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Seung-Kook Choi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosquera-Yuqui, F., Garrido, P. & Flores, F.J. Molecular characterization and complete genome of alstroemeria mosaic virus (AlMV). Virus Genes 56, 87–93 (2020). https://doi.org/10.1007/s11262-019-01712-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-019-01712-9

Keywords

Navigation