Skip to main content
Log in

Mitochondrial dysfunction and chronic lung disease

  • Review
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The functions of body gradually decrease as the age increases, leading to a higher frequency of incidence of age-related diseases. Diseases associated with aging in the respiratory system include chronic obstructive pulmonary disease (COPD), IPF (idiopathic pulmonary fibrosis), asthma, lung cancer, and so on. The mitochondrial dysfunction is not only a sign of aging, but also is a disease trigger. This article aims to explain mitochondrial dysfunction as an aging marker, and its role in aging diseases of lung. We also discuss whether the mitochondria can be used as a target for the treatment of aging lung disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alonso A, Martin P, Albarran C, Aguilera B, Garcia O, Guzman A, et al. Detection of somatic mutations in the mitochondrial DNA control region of colorectal and gastric tumors by heteroduplex and single-strand conformation analysis. Electrophoresis. 1997;18(5):682–5.

    CAS  PubMed  Google Scholar 

  • Andrianifahanana M, Hernandez DM, Yin X, Kang J-H, Jung M-Y, Wang Y, et al. Profibrotic up-regulation of glucose transporter 1 by TGF-β involves activation of MEK and mammalian target of rapamycin complex 2 pathways. FASEB J. 2016;30(11):3733–44. https://doi.org/10.1096/fj.201600428R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20(1):31–42.

    CAS  PubMed  Google Scholar 

  • Bensinger SJ, Christofk HR. New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol. 2012;23:352–61.

    CAS  PubMed  Google Scholar 

  • Bonner MR, Shen M, Liu CS, Divita M, He X, Lan Q. Mitochondrial DNA content and lung cancer risk in Xuan Wei, China. Lung Cancer. 2009;63(3):331–4.

    PubMed  Google Scholar 

  • Bueno M, Lai YC, Romero Y, Brands J, St. Croix CM, Kamga C, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest. 2015;125(2):521–38.

    PubMed  Google Scholar 

  • Burgart LJ, Zheng J, Shu Q, Strickler JG, Shibata D. Somatic mitochondrial mutation in gastric cancer. Am J Pathol. 1995;147(4):1105–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.

    CAS  PubMed  Google Scholar 

  • Chatterjee A, Dasgupta S, Sidransky D. Mitochondrial subversion in cancer. Cancer Prev Res (Phila). 2011;4(5):638–54.

    CAS  Google Scholar 

  • Chen Y, Zhang J, Lin Y, Lei Q, Guan KL, Zhao S, et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep. 2011;12(6):534–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiche J, Rouleau M, Gounon P, Brahimi-Horn MC, Pouysségur J, Mazure NM. Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli. J Cell Physiol. 2010;222(3):648–57.

    CAS  PubMed  Google Scholar 

  • Cho SJ, Moon J-S, Lee C-M, Choi AMK, Stout-Delgado HW. Glucose transporter 1-dependent glycolysis is increased during aging-related lung fibrosis, and phloretin inhibits lung fibrosis. Am J Respir Cell Mol Biol. 2017;56(4):521–31. https://doi.org/10.1165/rcmb.2016-0225OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta S, Soudry E, Mukhopadhyay N, Shao C, Yee J, Lam S, et al. Mitochondrial DNA mutations in respiratory complex-I in never-smoker lung cancer patients contribute to lung cancer progression and associated with EGFR gene mutation. J Cell Physiol. 2012;227(6):2451–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 2012;393(7):547–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du G, Sun T, Zhang Y, et al. The mitochondrial dysfunction plays an important role in urethane-induced lung carcinogenesis. Eur J Pharmacol. 2013;715(1–3):395–404.

    CAS  PubMed  Google Scholar 

  • Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science. 2000;287(5460):2017–9.

    CAS  PubMed  Google Scholar 

  • Gasparre G, Kurelac I, Capristo M, et al. A mutation threshold distinguishes the anti-tumorigenic effects of the mitochondrial gene MTND1, an Oncojanus function. Cancer Res. 2011;71:6220e9.

    Google Scholar 

  • Gibson GJ, Loddenkemper R, Lundbäck B, Sibille Y. Respiratory health and disease in Europe: the new European lung white book. Eur Respir J. 2013;42(3):559–63.

    PubMed  Google Scholar 

  • Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9–22.

    CAS  PubMed  Google Scholar 

  • Habano W, Sugai T, Nakamura SI, Uesugi N, Yoshida T, Sasou S. Microsatellite instability and mutation of mitochondrial and nuclear DNA in gastric carcinoma. Gastroenterology. 2000;118(5):835–41.

    CAS  PubMed  Google Scholar 

  • Hawkins A, Guttentag SH, Deterding R, Funkhouser WK, Goralski JL, Chatterjee S, et al. A non-BRICHOS SFTPC mutant (SP-CI73T) linked to interstitial lung disease promotes a late block in macroautophagy disrupting cellular proteostasis and mitophagy. Am J Phys Lung Cell Mol Phys. 2015;308(1):L33–47.

    CAS  Google Scholar 

  • Hosgood HD 3rd, Liu CS, Rothman N, et al. Mitochondrial DNA copy number and lung cancer risk in a prospective cohort study. Carcinogenesis. 2010;31(5):847–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Wang X, Hu D. Mitochondrial alterations during oxidative stress in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2017;Volume 12:1153–62.

    Google Scholar 

  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005;18:283–93.

    CAS  PubMed  Google Scholar 

  • Justet A, Laurent-Bellue A, Thabut G, et al. [<sup>18</sup>F]FDG PET/CT predicts progression-free survival in patients with idiopathic pulmonary fibrosis. Respir Res. 2017;18(1):74.

    PubMed  PubMed Central  Google Scholar 

  • Kageyama S, Sou YS, Uemura T, Kametaka S, Saito T, Ishimura R, et al. Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway. J Biol Chem. 2014;289(36):24944–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khatri S, Yepiskoposyan H, Gallo CA, Tandon P, Plas DR. FOXO3a regulates glycolysis via transcriptional control of tumor suppressor TSC1. J Biol Chem. 2010;285:15960–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 2007;462(2):245–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Cheresh P, Jablonski RP, et al. Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage. Free Radic Biol Med. 2016.

  • Kottmann RM, Kulkarni AA, Smolnycki KA, Lyda E, Dahanayake T, Salibi R, et al. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β. Am J Respir Crit Care Med. 2012;186(8):740–51. https://doi.org/10.1164/rccm.201201-0084OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubli DA, Gustafsson ÅB. Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res. 2012;111(9):1208–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Jiang P, Robinson M, Lawrence TS, Sun Y. AMPK-beta1 subunit is a p53-independent stress responsive protein that inhibits tumor cell growth upon forced expression. Carcinogenesis. 2003;24(5):827–34.

    CAS  PubMed  Google Scholar 

  • Li B, Gordon GM, Du CH, Xu J, Du W. Specific killing of Rb mutant cancer cells by inactivating TSC2. Cancer Cell. 2010;17(5):469–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Chen Z. The pathophysiological role of mitochondrial oxidative stress in lung diseases. J Transl Med. 2017;15(1):207.

    PubMed  PubMed Central  Google Scholar 

  • Maher TM. Aerobic glycolysis and the Warburg effect. An unexplored realm in the search for fibrosis therapies? Am J Respir Crit Care Med. 2015;192(12):1407–9.

    PubMed  PubMed Central  Google Scholar 

  • Máximo V, Soares P, Seruca R, Sobrinho-Simões M. Comments on: mutations in mitochondrial control region DNA in gastric tumours of Japanese patients, Tamura, et al. Eur J Cancer 1999, 35, 316-319. Eur J Cancer. 1999;35(9):1407–8.

    PubMed  Google Scholar 

  • Mercado N, Ito K, Barnes PJ. Accelerated ageing of the lung in COPD: new concepts. Thorax. 2015;70(5):482–9.

    PubMed  Google Scholar 

  • Mizumura K, Cloonan SM, Nakahira K, Bhashyam AR, Cervo M, Kitada T, et al. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest. 2014;124(9):3987–4003.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mora AL, Bueno M, Rojas M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J Clin Invest. 2017;127(2):405–14.

    PubMed  PubMed Central  Google Scholar 

  • Nam HS, Izumchenko E, Dasgupta S, Hoque MO. Mitochondria in chronic obstructive pulmonary disease and lung cancer: where are we now? Biomark Med. 2017;11(6):475–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noguera A, Batle S, Miralles C, Iglesias J, Busquets X, MacNee W, et al. Enhanced neutrophil response in chronic obstructive pulmonary disease. Thorax. 2001;56:432e7.

    Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, et al. Mitochondria, oxidative stress and cell death. Apoptosis. 2007;12:913e22.

    Google Scholar 

  • Parsons DW, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Penta JS, Johnson FM, Wachsman JT, et al. Mitochondrial DNA in human malignancy. Mutat Res. 2001;488:119e33.

    Google Scholar 

  • Piantadosi CA, Suliman HB. Mitochondrial Dysfunction in Lung Pathogenesis. Annu Rev Physiol. 2017

  • Picca A, Lezza AMS, Leeuwenburgh C, et al. Fueling Inflamm-Aging through Mitochondrial Dysfunction: Mechanisms and Molecular Targets. Int J Mol Sci. 2017;18(5).

    PubMed Central  Google Scholar 

  • Plas DR, Thompson CB. Akt-dependent transformation: there is more to growth than just surviving. Oncogene. 2005;24(50):7435–42.

    CAS  PubMed  Google Scholar 

  • Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE Biological and chemical approaches to diseases of proteostasis deficiency Annu Rev Biochem 2009

  • Prakash YS, Pabelick CM, Sieck GC. Mitochondrial dysfunction in airway disease. Chest. 2017;152(3):618–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovich RA, Bastos R, Ardite E, Llinas L, Orozco-Levi M, Gea J, et al. Mitochondrial dysfunction in COPD patients with low body mass index. Eur Respir J. 2007;29(4):643–50.

    CAS  PubMed  Google Scholar 

  • Rangarajan S, Bernard K, Thannickal VJ. Mitochondrial Dysfunction in Pulmonary Fibrosis. Ann Am Thorac Soc. 2017;14(Supplement_5):S383–8.

    PubMed  PubMed Central  Google Scholar 

  • Richter C, Gogvadze V, Laffranchi R, et al. Oxidants in mitochondria: from physiology to diseases. Biochim Biophys Acta. 1995;1271:67e74.

    Google Scholar 

  • Roberts ER, Thomas KJ. The role of mitochondria in the development and progression of lung cancer. Comput Struct Biotechnol J. 2013;6:e201303019.

    PubMed  PubMed Central  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434(7029):113–8. https://doi.org/10.1038/nature03354.

    Article  CAS  PubMed  Google Scholar 

  • Ryu C, Sun H, Gulati M, Herazo-Maya JD, Chen Y, Osafo-Addo A, et al. Extracellular mitochondrial DNA is generated by fibroblasts and predicts death in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2017;196(12):1571–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahin E, Colla S, Liesa M, Moslehi J, Müller FL, Guo M, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 2011;470(7334):359–65. https://doi.org/10.1038/nature09787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Servais S, Couturier K, Koubi H, et al. Effect of voluntary exercise on H2O2 release by subsarcolemmal and intermyofibrillar mitochondria. Free Radic Biol Med. 2003;35(1):24–32.

    CAS  PubMed  Google Scholar 

  • Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009;9(8):563–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shidara Y, Yamagata K, Kanamori T, et al. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res. 2005;65:1655e63.

    Google Scholar 

  • Sinthupibulyakit C, Ittarat W, St Clair WH, St Clair DK. p53 protects lung cancer cells against metabolic stress. Int J Oncol. 2010;37(6):1575–81.

    PubMed  Google Scholar 

  • Sisson TH, Mendez M, Choi K, Subbotina N, Courey A, Cunningham A, et al. Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med. 2010;181(3):254–63.

    CAS  PubMed  Google Scholar 

  • Soulitzis N, Neofytou E, Psarrou M, Anagnostis A, Tavernarakis N, Siafakas N, et al. Downregulation of lung mitochondrial prohibitin in COPD. Respir Med. 2012;106(7):954–61.

    PubMed  Google Scholar 

  • Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458:719–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Toyooka S, Miyajima K, Iizasa T, Fujisawa T, Bekele NB, et al. Alterations in the mitochondrial displacement loop in lung cancers. Clin Cancer Res. 2003;9(15):5636–41.

    CAS  PubMed  Google Scholar 

  • Taanman J-W. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta. 1999;1410:103e23.

    Google Scholar 

  • Tang BL. Sirt1 and the mitochondria. Mol Cell. 2016;39(2):87–95. https://doi.org/10.14348/molcells.2016.2318.

    Article  CAS  Google Scholar 

  • Thannickal VJ. Mechanistic links between aging and lung fibrosis. Biogerontology. 2013;14(6):609-15Mora AL, Rojas M, Pardo a, Selman M. emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov. 2017;16(11):755–72.

    Google Scholar 

  • the international Cancer genome consortium. International network of cancer genome projects. Nature. 2010;464:993–8.

    PubMed Central  Google Scholar 

  • Thomas AQ, Lane K, Phillips J 3rd, et al. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am J Respir Crit Care Med. 2002;165(9):1322–8.

    PubMed  Google Scholar 

  • Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging,and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407. https://doi.org/10.1146/annurev.genet.39.110304.095751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O. On respiratory impairment in cancer cells. Science. 1956;124(3215):269–70.

    CAS  PubMed  Google Scholar 

  • Wei YH, Lee HC. Oxidative stress, mitochondrial DNA mutation and impairment of antioxidant enzymes in aging. Proc Soc Exp Biol Med. 2002:671e82.

  • West AP. Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology. 2017.

  • World Health Organization World and Europe Detailed Mortality Databases. http://data.euro.who.int/dmdb/. Date last accessed: June 20, 2013.

  • World Health Organization. World Health Statistics 2011.Geneva,World HealthOrganization,2011http://wwwwhoint/entity/whosis/whostat/EN_WHS2011_Fullpdf. Date last accessed: June 20, 2013.

  • Xu CX, Jin H, Shin JY, Kim JE, Cho MH. Roles of protein kinase B/Akt in lung cancer. Front Biosci (Elite Ed). 2010.

  • Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J, et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight. 2016;1(20):e90558. https://doi.org/10.1172/jci.insight.90558.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Ai SS, Hsu K, Herbert C, Cheng Z, Hunt J, Lewis CR, et al. Mitochondrial DNA mutations in exhaled breath condensate of patients with lung cancer. Respir Med. 2013;107(6):911–8.

    PubMed  Google Scholar 

  • Yoo DG, Song YJ, Cho EJ, Lee SK, Park JB, Yu JH, et al. Alteration of APE1/ref-1 expression in non-small cell lung cancer: the implications of impaired extracellular superoxide dismutase and catalase antioxidant systems. Lung Cancer. 2008;60(2):277–84.

    PubMed  Google Scholar 

  • Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12(1):9–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu YP, Yu G, Tseng G, Cieply K, Nelson J, Defrances M, et al. Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis. Cancer Res. 2007;67(17):8043–50.

    CAS  PubMed  Google Scholar 

  • Yu W, Dittenhafer-Reed KE, Denu JM. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J Biol Chem. 2012;287(17):14078–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yue L, Yao H. Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases. Br J Pharmacol. 2016;173(15):2305–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol. 2001;2:67e71.

    Google Scholar 

  • Zank DC, Bueno M, Mora AL, Rojas M. Idiopathic pulmonary fibrosis: aging, mitochondrial dysfunction, and cellular bioenergetics. Front Med (Lausanne). 2018;5.

  • Zeng Z, Cheng S, Chen H, Li Q, Hu Y, Wang Q, et al. Activation and overexpression of Sirt1 attenuates lung fibrosis via P300. Biochem Biophys Res Commun. 2017;486(4):1021–6. https://doi.org/10.1016/j.bbrc.2017.03.155.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang W, Zhu B, Wang X. Epithelial Mitochondrial Dysfunction in Lung Disease. Adv Exp Med Biol. 2017.

  • Zhang Z, Cheng X, Yue L, Cui W, Zhou W, Gao J, et al. Molecular pathogenesis in chronic obstructive pulmonary disease and therapeutic potential by targeting AMP-activated protein kinase. J Cell Physiol. 2018;233(3):1999–2006.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

TT-F, MN-W, XW-W, and HY-X are supported by Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital.TT-F and MN-W are co-first authors.

Funding

This work is supported by the National Key Research and Development Program of China (No. 2016YFA0201402) and the National Natural Science Foundation of China (No. 81602492).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hengyi Xiao or Xiawei Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, T., Wang, M., Xiao, H. et al. Mitochondrial dysfunction and chronic lung disease. Cell Biol Toxicol 35, 493–502 (2019). https://doi.org/10.1007/s10565-019-09473-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-019-09473-9

Keywords

Navigation