Skip to main content

Advertisement

Log in

Functional analysis of glycosylation using Drosophila melanogaster

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The glycosylation of proteins and lipids has various essential roles in a diverse range of biological processes, including embryogenesis, organ development, neurogenesis, maintenance of homeostasis, immune response, and tumorigenesis. Drosophila melanogaster is one of the representative multicellular model organisms, which have many useful genetic manipulation tools; it is used in developmental biology as well as classical and molecular genetics. Glycobiology is not an exception and many studies using Drosophila have been performed in this field to clarify novel functions of glycans. Recently, genome-wide screening and functional analyses were performed in whole body, wings, eyes, neuromuscular junctions, and immune organs. Furthermore, detailed studies with Drosophila mutants of glycosyltransferases, nucleotide sugar transporters, and glycosidases revealed novel functions of N-linked glycans, glycosaminoglycans, glycolipids, and O-linked glycans including mucin type O-glycan, O-Fuc, O-Man, and O-GlcNAc. As many of these functions are common between Drosophila and humans, these mutants represent good models for human disease. In this review, recent studies of glycan functions using Drosophila are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cooley, L., Kelley, R., Spradling, A.: Insertional mutagenesis of the Drosophila genome with single P elements. Science. 239, 1121–1128 (1988)

    CAS  PubMed  Google Scholar 

  2. Kondo, S., Ueda, R.: Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics. 195, 715–721 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Brand, A.H., Perrimon, N.: Targeted gene expression as a means of altering cell fates and gene rating dominant phenotypes. Development. 118, 401–415 (1993)

    CAS  PubMed  Google Scholar 

  4. Nishihara, S.: Glycans in stem cell regulation: from Drosophila tissue stem cells to mammalian pluripotent stem cells. FEBS Lett. 592, 3773–3790 (2018)

    CAS  PubMed  Google Scholar 

  5. Walski, T., De Schutter, K., Van Damme, E.J.M., Smagghe, G.: Diversity and functions of protein glycosylation in insects. Insect Biochem. Mol. Biol. 83, 21–34 (2017)

    CAS  PubMed  Google Scholar 

  6. Frappaolo, A., Sechi, S., Kumagai, T., Karimpour-Ghahnavieh, A., Tiemeyer, M., Giansanti, M.G.: Modeling congenital disorders of N-linked glycoprotein glycosylation in Drosophila melanogaster. Front. Genet. 9, 436 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Varshney, S., Stanley, P.: Multiple roles for O-glycans in notch signalling. FEBS Lett. 592, 3819–3834 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakato, H., Li, J.P.: Functions of heparan sulfate proteoglycans in development: insights from Drosophila models. Int. Rev. Cell Mol. Biol. 325, 275–293 (2016)

    CAS  PubMed  Google Scholar 

  9. Nishihara, S.: Glycosyltransferases and transporters that contribute to proteoglycan synthesis in Drosophila: identification and functional analyses using the heritable and inducible RNAi system. Methods Enzymol. 480, 323–351 (2010)

    CAS  PubMed  Google Scholar 

  10. Aoki, K., Tiemeyer, M.: The glycomics of glycan glucuronylation in Drosophila melanogaster. Methods Enzymol. 480, 297–321 (2010)

    CAS  PubMed  Google Scholar 

  11. Joshi, H.J., Narimatsu, Y., Schjoldager, K.T., Tytgat, H.L.P., Aebi, M., Clausen, H., Halim, A.: SnapShot: O-glycosylation pathways across kingdoms. Cell. 172, 632–632 (2018)

    CAS  PubMed  Google Scholar 

  12. Dani, N., Broadie, K.: Glycosylated synaptomatrix regulation of trans-synaptic signaling. Dev Neurobiol. 72, 2–21 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaneko, M., Nishihara, S., Narimatsu, H., Saitou, N.: The evolutionary history of glycosyltransferase genes. TIGG. 13, 147–155 (2001)

    CAS  Google Scholar 

  14. Takemae, H., Ueda, R., Okubo, R., Nakato, H., Izumi, S., Saigo, K., Nishihara, S.: Proteoglycan UDP-galactose: β-xylose β1,4-galactosyltransferase I is essential for viability in Drosophila melanogaster. J. Biol. Chem. 278, 15571–15578 (2003)

    CAS  PubMed  Google Scholar 

  15. Ichimiya, T., Manya, H., Ohmae, Y., Yoshida, H., Takahashi, K., Ueda, R., Endo, T., Nishihara, S.: The twisted abdomen phenotype of Drosophila POMT1 and POMT2 mutants coincides with their heterophilic protein O-mannosyltransferase activity. J. Biol. Chem. 279, 42638–42647 (2004)

    CAS  PubMed  Google Scholar 

  16. Ueyama, M., Takemae, H., Ohmae, Y., Yoshida, H., Toyoda, H., Ueda, R., Nishihara, S.: Functional analysis of proteoglycan galactosyltransferase II RNA interference mutant flies. J. Biol. Chem. 283, 6076–6084 (2008)

    CAS  PubMed  Google Scholar 

  17. Müller, R., Hülsmeier, A.J., Altmann, F., Ten Hagen, K., Tiemeyer, M., Hennet, T.: Characterization of mucin-type core-1 β1-3 galactosyltransferase homologous enzymes in Drosophila melanogaster. FEBS J. 272, 4295–4305 (2005)

    PubMed  Google Scholar 

  18. Yamamoto-Hino, M., Yoshida, H., Ichimiya, T., Sakamura, S., Maeda, M., Kimura, Y., Sasaki, N., Aoki-Kinoshita, K.F., Kinoshita-Toyoda, A., Toyoda, H., Ueda, R., Nishihara, S., Goto, S.: Phenotype-based clustering of glycosylation-related genes by RNAi-mediated gene silencing. Genes Cells. 20, 521–542 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Altmann, F., Fabini, G., Ahorn, H., Wilson, I.B.: Genetic model organisms in the study of N-glycans. Biochimie. 83, 703–712 (2001)

    CAS  PubMed  Google Scholar 

  20. Aoki, K., Perlman, M., Lim, J.M., Cantu, R., Wells, L., Tiemeyer, M.: Dynamic developmental elaboration of N-linked glycan complexity in the Drosophila melanogaster embryo. J. Biol. Chem. 282, 9127–9142 (2007)

    CAS  PubMed  Google Scholar 

  21. Kanie, Y., Yamamoto-Hino, M., Karino, Y., Yokozawa, H., Nishihara, S., Ueda, R., Goto, S., Kanie, O.: Insight into the regulation of glycan synthesis in Drosophila chaoptin based on mass spectrometry. PLoS One. 4, e5434 (2009)

    PubMed  PubMed Central  Google Scholar 

  22. Aoki, K., Porterfield, M., Lee, S.S., Dong, B., Nguyen, K., McGlamry, K.H., Tiemeyer, M.: The diversity of O-linked glycans expressed during Drosophila melanogaster development reflects stage- and tissue-specific requirements for cell signaling. J. Biol. Chem. 283, 30385–30400 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Harvey, B.M., Rana, N.A., Moss, H., Leonardi, J., Jafar-Nejad, H., Haltiwanger, R.S.: Mapping sites of O-glycosylation and fringe elongation on Drosophila notch. J. Biol. Chem. 291, 16348–16360 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakamura, N., Stalnaker, S.H., Lyalin, D., Lavrova, O., Wells, L., Panin, V.M.: Drosophila dystroglycan is a target of O-mannosyltransferase activity of two protein O-mannosyltransferases, Rotated abdomen and Twisted. Glycobiology. 20, 381–394 (2010)

    CAS  PubMed  Google Scholar 

  25. Toyoda, H., Kinoshita-Toyoda, A., Selleck, S.B.: Structural analysis of glycosaminoglycans in Drosophila and Caenorhabditis elegans and demonstration that tout-velu, a Drosophila gene related to EXT tumor suppressors, affects heparan sulfate in vivo. J. Biol. Chem. 275, 2269–2275 (2000)

    CAS  PubMed  Google Scholar 

  26. Lawrence, R., Olson, S.K., Steele, R.E., Wang, L., Warrior, R., Cummings, R.D., Esko, J.D.: Evolutionary differences in glycosaminoglycan fine structure detected by quantitative glycan reductive isotope labeling. J. Biol. Chem. 283, 33674–33684 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kusche-Gullberg, M., Nybakken, K., Perrimon, N., Lindahl, U.: Drosophila heparan sulfate, a novel design. J. Biol. Chem. 287, 21950–21956 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Seppo, A., Moreland, M., Schweingruber, H., Tiemeyer, M.: Zwitterionic and acidic glycosphingolipids of the Drosophila melanogaster embryo. Eur. J. Biochem. 267, 3549–3558 (2000)

    CAS  PubMed  Google Scholar 

  29. Dani, N., Nahm, M., Lee, S., Broadie, K.: A targeted glycan-related gene screen reveals heparan sulfate proteoglycan sulfation regulates WNT and BMP trans-synaptic signaling. PLoS Genet. 8, e1003031 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kleinschmit, A., Koyama, T., Dejima, K., Hayashi, Y., Kamimura, K., Nakato, H.: Drosophila heparan sulfate 6-O endosulfatase regulates wingless morphogen gradient formation. Dev. Biol. 345, 204–214 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dejima, K., Kanai, M., Akiyama, T., Levings, D.C., Nakato, H.: Novel contact-dependent bone morphogenetic protein (BMP) signaling mediated by heparan sulfate proteoglycans. J. Biol. Chem. 286, 17103–17111 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Boquet, I., Hitier, R., Dumas, M., Chaminade, M., Préat, T.: Central brain postembryonic development in Drosophila: implication of genes expressed at the interhemispheric junction. J. Neurobiol. 42, 33–48 (2000)

    CAS  PubMed  Google Scholar 

  33. Léonard, R., Rendic, D., Rabouille, C., Wilson, I.B., Préat, T., Altmann, F.: The Drosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing. J Biol Chem. 281, 4867–4875 (2006)

    PubMed  Google Scholar 

  34. Geisler, C., Jarvis, D.L.: Substrate specificities and intracellular distributions of three N-glycan processing enzymes functioning at a key branch point in the insect N-glycosylation pathway. J. Biol. Chem. 287, 7084–7097 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mabashi-Asazuma, H., Kuo, C.W., Khoo, K.H., Jarvis, D.L.: Modifying an insect cell N-glycan processing pathway using CRISPR-Cas technology. ACS Chem. Biol. 10, 2199–2208 (2015)

    CAS  PubMed  Google Scholar 

  36. Rosenbaum, E.E., Vasiljevic, E., Brehm, K.S., Colley, N.J.: Mutations in four glycosyl hydrolases reveal a highly coordinated pathway for rhodopsin biosynthesis and N-glycan trimming in Drosophila melanogaster. PLoS Genet. 10, e1004349 (2014)

    PubMed  PubMed Central  Google Scholar 

  37. Shaik, K.S., Pabst, M., Schwarz, H., Altmann, F., Moussian, B.: The Alg5 ortholog Wollknäuel is essential for correct epidermal differentiation during Drosophila late embryogenesis. Glycobiology. 21, 743–756 (2011)

    CAS  PubMed  Google Scholar 

  38. Zhang, Y., Kong, D., Reichl, L., Vogt, N., Wolf, F., Großhans, J.: The glucosyltransferase Xiantuan of the endoplasmic reticulum specifically affects E-cadherin expression and is required for gastrulation movements in Drosophila. Dev. Biol. 390, 208–220 (2014)

    CAS  PubMed  Google Scholar 

  39. Sarkar, M., Iliadi, K.G., Leventis, P.A., Schachter, H., Boulianne, G.L.: Neuronal expression of Mgat1 rescues the shortened life span of Drosophila Mgat11 null mutants and increases life span. Proc. Natl. Acad. Sci. U. S. A. 107, 9677–9682 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Parkinson, W., Dear, M.L., Rushton, E., Broadie, K.: N-glycosylation requirements in neuromuscular synaptogenesis. Development. 140, 4970–4981 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Koles, K., Irvine, K.D., Panin, V.M.: Functional characterization of Drosophila sialyltransferase. J. Biol. Chem. 279, 4346–4357 (2004)

    CAS  PubMed  Google Scholar 

  42. Viswanathan, K., Tomiya, N., Park, J., Singh, S., Lee, Y.C., Palter, K.: Expression of a functional Drosophila melanogaster CMP-sialic acid synthetase. Differential localization of the Drosophila and human enzymes. J Biol Chem. 281, 15929–15940 (2006)

    CAS  PubMed  Google Scholar 

  43. Mertsalov, I.B., Novikov, B.N., Scott, H., Dangott, L., Panin, V.M.: Characterization of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties. Biochem. J. 473, 1905–1916 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Di, W., Fujita, A., Hamaguchi, K., Delannoy, P., Sato, C., Kitajima, K.: Diverse subcellular localizations of the insect CMP-sialic acid synthetases. Glycobiology. 27, 329–341 (2017)

    CAS  PubMed  Google Scholar 

  45. Islam, R., Nakamura, M., Scott, H., Repnikova, E., Carnahan, M., Pandey, D., Caster, C., Khan, S., Zimmermann, T., Zoran, M.J., Panin, V.M.: The role of Drosophila cytidine monophosphate-sialic acid synthetase in the nervous system. J. Neurosci. 33, 12306–12315 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Repnikova, E., Koles, K., Nakamura, M., Pitts, J., Li, H., Ambavane, A., Zoran, M.J., Panin, V.M.: Sialyltransferase regulates nervous system function in Drosophila. J. Neurosci. 30, 6466–6476 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jan, L.Y., Jan, Y.N.: Antibodies to horseradish peroxidase as specific neuronal markers in Drosophila and in grasshopper embryos. Proc. Natl. Acad. Sci. U. S. A. 79, 2700–2704 (1982)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kurosaka, A., Yano, A., Itoh, N., Kuroda, Y., Nakagawa, T., Kawasaki, T.: The structure of a neural specific carbohydrate epitope of horseradish peroxidase recognized by anti-horseradish peroxidase antiserum. J. Biol. Chem. 266, 4168–4172 (1991)

    CAS  PubMed  Google Scholar 

  49. Fabini, G., Freilinger, A., Altmann, F., Wilson, I.B.: Identification of core α1,3-fucosylated glycans and cloning of the requisite fucosyltransferase cDNA from Drosophila melanogaster. Potential basis of the neural anti-horseadish peroxidase epitope. J Biol Chem. 276, 28058–28067 (2001)

    CAS  PubMed  Google Scholar 

  50. Yamamoto-Hino, M., Kanie, Y., Awano, W., Aoki-Kinoshita, K.F., Yano, H., Nishihara, S., Okano, H., Ueda, R., Kanie, O., Goto, S.: Identification of genes required for neural-specific glycosylation using functional genomics. PLoS Genet. 6, e1001254 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Intra, J., Concetta, V., de Daniela, C., Perotti, M.E., Pasini, M.E.: Drosophila sperm surface alpha-L-fucosidase interacts with the egg coats through its core fucose residues. Insect Biochem. Mol. Biol. 63, 133–143 (2015)

    CAS  PubMed  Google Scholar 

  52. Mortimer, N.T., Kacsoh, B.Z., Keebaugh, E.S., Schlenke, T.A.: Mgat1-dependent N-glycosylation of membrane components primes Drosophila melanogaster blood cells for the cellular encapsulation response. PLoS Pathog. 8, e1002819 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Marada, S., Navarro, G., Truong, A., Stewart, D.P., Arensdorf, A.M., Nachtergaele, S., Angelats, E., Opferman, J.T., Rohatgi, R., McCormick, P.J., Ogden, S.K.: Functional divergence in the role of N-linked glycosylation in smoothened signaling. PLoS Genet. 11, e1005473 (2015)

    PubMed  PubMed Central  Google Scholar 

  54. Tran, D.T., Zhang, L., Zhang, Y., Tian, E., Earl, L.A., Ten Hagen, K.G.: Multiple members of the UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase family are essential for viability in Drosophila. J. Biol. Chem. 287, 5243–5252 (2012)

    CAS  PubMed  Google Scholar 

  55. Zhang, L., Tran, D.T., Ten Hagen, K.G.: An O-glycosyltransferase promotes cell adhesion during development by influencing secretion of an extracellular matrix integrin ligand. J. Biol. Chem. 285, 19491–19501 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dani, N., Zhu, H., Broadie, K.: Two protein N-acetylgalactosaminyl transferases regulate synaptic plasticity by activity-dependent regulation of integrin signaling. J. Neurosci. 34, 13047–13065 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, L., Syed, Z.A., van Dijk Härd, I., Lim, J.M., Wells, L., Ten Hagen, K.G.: O-glycosylation regulates polarized secretion by modulating Tango1 stability. Proc Natl Acad Sci U S A. 111, 7296–7301 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, L., Turner, B., Ribbeck, K., Ten Hagen, K.G.: Loss of the mucosal barrier alters the progenitor cell niche via Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. J. Biol. Chem. 292, 21231–21242 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ji, S., Samara, N.L., Revoredo, L., Zhang, L., Tran, D.T., Muirhead, K., Tabak, L.A., Ten Hagen, K.G.: A molecular switch orchestrates enzyme specificity and secretory granule morphology. Nat. Commun. 9, 3508 (2018)

    PubMed  PubMed Central  Google Scholar 

  60. Yoshida, H., Fuwa, T.J., Arima, M., Hamamoto, H., Sasaki, N., Ichimiya, T., Osawa, K., Ueda, R., Nishihara, S.: Identification of the Drosophila core 1 beta1,3-galactosyltransferase gene that synthesizes T antigen in the embryonic central nervous system and hemocytes. Glycobiology. 18, 1094–1104 (2008)

    CAS  PubMed  Google Scholar 

  61. Lin, Y.R., Reddy, B.V., Irvine, K.D.: Requirement for a core 1 galactosyltransferase in the Drosophila nervous system. Dev. Dyn. 237, 3703–3714 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fuwa, T.J., Kinoshita, T., Nishida, H., Nishihara, S.: Reduction of T antigen causes loss of hematopoietic progenitors in Drosophila through the inhibition of filopodial extensions from the hematopoietic niche. Dev. Biol. 401, 206–219 (2015)

    CAS  PubMed  Google Scholar 

  63. Valoskova, K., Biebl, J., Roblek, M., Emtenani, S., Gyoergy, A., Misova, M., Ratheesh, A., Reis-Rodrigues, P., Shkarina, K., Larsen, I.S.B., Vakhrushev, S.Y., Clausen, H., Siekhaus, D.E.: A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion. Elife. 8, e41801 (2019)

    PubMed  PubMed Central  Google Scholar 

  64. Itoh, K., Akimoto, Y., Fuwa, T.J., Sato, C., Komatsu, A., Nishihara, S.: Mucin-type core 1 glycans regulate the localization of neuromuscular junctions and establishment of muscle cell architecture in Drosophila. Dev. Biol. 412, 114–127 (2016)

    CAS  PubMed  Google Scholar 

  65. Pandey, R., Blanco, J., Udolph, G.: The glucuronyltransferase GlcAT-P is required for stretch growth of peripheral nerves in Drosophila. PLoS One. 6, e28106 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Itoh, K., Akimoto, Y., Kondo, S., Ichimiya, T., Aoki, K., Tiemeyer, M., Nishihara, S.: Glucuronylated core 1 glycans are required for precise localization of neuromuscular junctions and normal formation of basement membranes on Drosophila muscles. Dev. Biol. 436, 108–124 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Breloy, I., Schwientek, T., Althoff, D., Holz, M., Koppen, T., Krupa, A., Hanisch, F.G.: Functional analysis of the glucuronyltransferases GlcAT-P and GlcAT-S of Drosophila melanogaster: distinct activities towards the O-linked T-antigen. Biomolecules. 6, 8 (2016)

    PubMed  PubMed Central  Google Scholar 

  68. Martin, P.: Glycobiology of the neuromuscular junction. J. Neurocytol. 32, 915–929 (2003)

    CAS  PubMed  Google Scholar 

  69. Schneider, I.: Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol. 27, 353–365 (1972)

    CAS  PubMed  Google Scholar 

  70. Henrique, D., Schweisguth, F.: Mechanisms of Notch signaling: a simple logic deployed in time and space. Development. 146, dev172148 (2019)

    PubMed  Google Scholar 

  71. Xu, A., Haines, N., Dlugosz, M., Rana, N.A., Takeuchi, H., Haltiwanger, R.S., Irvine, K.D.: In vitro reconstitution of the modulation of Drosophila notch-ligand binding by fringe. J. Biol. Chem. 282, 35153–33562 (2007)

    CAS  PubMed  Google Scholar 

  72. LeBon, L., Lee, T.V., Sprinzak, D., Jafar-Nejad, H., Elowitz, M.B.: Fringe proteins modulate notch-ligand cis and trans interactions to specify signaling states. Elife. 3, e02950 (2014)

    PubMed  PubMed Central  Google Scholar 

  73. Thomas, G.B., van Meyel, D.J.: The glycosyltransferase fringe promotes Delta-notch signaling between neurons and glia, and is required for subtype-specific glial gene expression. Development. 134, 591–600 (2007)

    CAS  PubMed  Google Scholar 

  74. Stacey, S.M., Muraro, N., Peco, E., Labbé, A., Thomas, G.B., Baines, R.A., van Meyel, D.J.: Drosophila glial glutamate transporter Eaat1 is regulated by fringe-mediated notch signaling and is essential for larval locomotion. J. Neurosci. 30, 14446–14457 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Okajima, T., Xu, A., Lei, L., Irvine, K.D.: Chaperone activity of protein O-fucosyltransferase 1 promotes notch receptor folding. Science. 307, 1599–1603 (2005)

    CAS  PubMed  Google Scholar 

  76. Ishio, A., Sasamura, T., Ayukawa, T., Kuroda, J., Ishikawa, H.O., Aoyama, N., Matsumoto, K., Gushiken, T., Okajima, T., Yamakawa, T., Matsuno, K.: O-fucose monosaccharide of Drosophila notch has a temperature-sensitive function and cooperates with O-glucose glycan in notch transport and notch signaling activation. J. Biol. Chem. 290, 505–519 (2015)

    CAS  PubMed  Google Scholar 

  77. Matsumoto, K., Ayukawa, T., Ishio, A., Sasamura, T., Yamakawa, T., Matsuno, K.: Dual roles of O-glucose glycans redundant with monosaccharide O-fucose on notch in notch trafficking. J. Biol. Chem. 291, 13743–13752 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Perdigoto, C.N., Schweisguth, F., Bardin, A.J.: Distinct levels of notch activity for commitment and terminal differentiation of stem cells in the adult fly intestine. Development. 138, 4585–4595 (2011)

    CAS  PubMed  Google Scholar 

  79. Matsuura, A., Ito, M., Sakaidani, Y., Kondo, T., Murakami, K., Furukawa, K., Nadano, D., Matsuda, T., Okajima, T.: O-linked N-acetylglucosamine is present on the extracellular domain of notch receptors. J. Biol. Chem. 283, 35486–35495 (2008)

    CAS  PubMed  Google Scholar 

  80. Ogawa, M., Okajima, T.: Structure and function of extracellular O-GlcNAc. Curr. Opin. Struct. Biol. 56, 72–77 (2019)

    CAS  PubMed  Google Scholar 

  81. Sakaidani, Y., Nomura, T., Matsuura, A., Ito, M., Suzuki, E., Murakami, K., Nadano, D., Matsuda, T., Furukawa, K., Okajima, T.: O-linked-N-acetylglucosamine on extracellular protein domains mediates epithelial cell-matrix interactions. Nat. Commun. 2, 583 (2011)

    PubMed  Google Scholar 

  82. Baker, R., Nakamura, N., Chandel, I., Howell, B., Lyalin, D., Panin, V.M.: Protein O-mannosyltransferases affect sensory axon wiring and dynamic chirality of body posture in the Drosophila embryo. J. Neurosci. 38, 1850–1865 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Manya, H., Endo, T.: Glycosylation with ribitol-phosphate in mammals: new insights into the O-mannosyl glycan. Biochim. Biophys. Acta Gen. Subj. 1861, 2462–2472 (2017)

    CAS  PubMed  Google Scholar 

  84. Ueyama, M., Akimoto, Y., Ichimiya, T., Ueda, R., Kawakami, H., Aigaki, T., Nishihara, S.: Increased apoptosis of myoblasts in Drosophila model for the Walker-Warburg syndrome. PLoS One. 5, e11557 (2010)

    PubMed  PubMed Central  Google Scholar 

  85. Wairkar, Y.P., Fradkin, L.G., Noordermeer, J.N., DiAntonio, A.: Synaptic defects in a Drosophila model of congenital muscular dystrophy. J. Neurosci. 28, 3781–3789 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hart, G.W.: Nutrient regulation of signaling and transcription. J. Biol. Chem. 294, 2211–2231 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Gambetta, M.C., Oktaba, K., Müller, J.: Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science. 325, 93–96 (2009)

    CAS  PubMed  Google Scholar 

  88. Sinclair, D.A., Syrzycka, M., Macauley, M.S., Rastgardani, T., Komljenovic, I., Vocadlo, D.J., Brock, H.W., Honda, B.M.: Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc. Natl. Acad. Sci. U. S. A. 106, 13427–13432 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gambetta, M.C., Müller, J.: O-GlcNAcylation prevents aggregation of the Polycomb group repressor polyhomeotic. Dev. Cell. 31, 629–639 (2014)

    CAS  PubMed  Google Scholar 

  90. Liu, T.W., Myschyshyn, M., Sinclair, D.A., Cecioni, S., Beja, K., Honda, B.M., Morin, R.D., Vocadlo, D.J.: Genome-wide chemical mapping of O-GlcNAcylated proteins in Drosophila melanogaster. Nat. Chem. Biol. 13, 161–167 (2017)

    PubMed  Google Scholar 

  91. Park, S., Park, S.H., Baek, J.Y., Jy, Y.J., Kim, K.S., Roth, J., Cho, J.W., Choe, K.M.: Protein O-GlcNAcylation regulates Drosophila growth through the insulin signaling pathway. Cell. Mol. Life Sci. 68, 3377–3384 (2011)

    CAS  PubMed  Google Scholar 

  92. Park, S., Lee, Y., Pak, J.W., Kim, H., Choi, H., Kim, J.W., Roth, J., Cho, J.W.: O-GlcNAc modification is essential for the regulation of autophagy in Drosophila melanogaster. Cell. Mol. Life Sci. 72, 3173–3183 (2015)

    CAS  PubMed  Google Scholar 

  93. Kim, E.Y., Jeong, E.H., Park, S., Jeong, H.J., Edery, I., Cho, J.W.: A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev. 26, 490–502 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kaasik, K., Kivimäe, S., Allen, J.J., Chalkley, R.J., Huang, Y., Baer, K., Kissel, H., Burlingame, A.L., Shokat, K.M., Ptáček, L.J., Fu, Y.H.: Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab. 17, 291–302 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Na, J., Sweetwyne, M.T., Park, A.S., Susztak, K., Cagan, R.L.: Diet-induced podocyte dysfunction in Drosophila and mammals. Cell Rep. 12, 636–647 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Pekkurnaz, G., Trinidad, J.C., Wang, X., Kong, D., Schwarz, T.L.: Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell. 158, 54–68 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kamimura, K., Maeda, N., Nakato, H.: In vivo manipulation of heparan sulfate structure and its effect on Drosophila development. Glycobiology. 21, 607–618 (2011)

    CAS  PubMed  Google Scholar 

  98. Hayashi, Y., Sexton, T.R., Dejima, K., Perry, D.W., Takemura, M., Kobayashi, S., Nakato, H., Harrison, D.A.: Glypicans regulate JAK/STAT signaling and distribution of the unpaired morphogen. Development. 139, 4162–4171 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang, Y., You, J., Ren, W., Lin, X.: Drosophila glypicans dally and dally-like are essential regulators for JAK/STAT signaling and unpaired distribution in eye development. Dev. Biol. 375, 23–32 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Briscoe, J., Thérond, P.P.: The mechanisms of hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol. 14, 416–429 (2013)

    PubMed  Google Scholar 

  101. Chen, W., Huang, H., Hatori, R., Kornberg, T.B.: Essential basal cytonemes take up hedgehog in the Drosophila wing imaginal disc. Development. 144, 3134–3144 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  102. González-Méndez, L., Seijo-Barandiarán, I., Guerrero, I.: Cytoneme-mediated cell-cell contacts for hedgehog reception. Elife. 6, e24045 (2017)

    PubMed  PubMed Central  Google Scholar 

  103. Kleinschmit, A., Takemura, M., Dejima, K., Choi, P.Y., Nakato, H.: Drosophila heparan sulfate 6-O-endosulfatase Sulf1 facilitates wingless (Wg) protein degradation. J. Biol. Chem. 288, 5081–5089 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Norman, M., Vuilleumier, R., Springhorn, A., Gawlik, J., Pyrowolakis, G.: Pentagone internalises glypicans to fine-tune multiple signalling pathways. Elife. 5, e13301 (2016)

    PubMed  PubMed Central  Google Scholar 

  105. Ferreira, A., Milán, M.: Dally proteoglycan mediates the autonomous and nonautonomous effects on tissue growthcaused by activation of the PI3K and TOR pathways. PLoS Biol. 3, e1002239 (2015)

    Google Scholar 

  106. Trisnadi, N., Stathopoulos, A.: Ectopic expression screen identifies genes affecting Drosophila mesoderm development including the HSPG Trol. G3 (Bethesda). 5, 301–313 (2014)

    Google Scholar 

  107. Kamimura, K., Ueno, K., Nakagawa, J., Hamada, R., Saitoe, M., Maeda, N.: Perlecan regulates bidirectional Wnt signaling at the Drosophila neuromuscular junction. J. Cell Biol. 200, 219–233 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Hayashi, Y., Kobayashi, S., Nakato, H.: Drosophila glypicans regulate the germline stem cell niche. J. Cell Biol. 187, 473–480 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Levings, D.C., Arashiro, T., Nakato, H.: Heparan sulfate regulates the number and centrosome positioning of Drosophila male germline stem cells. Mol. Biol. Cell. 27, 888–896 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Dragojlovic-Munther, M., Martinez-Agosto, J.A.: Extracellular matrix-modulated heartless signaling in Drosophila blood progenitors regulates their differentiation via a Ras/ETS/FOG pathway and target of rapamycin function. Dev. Biol. 384, 313–330 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Pennetier, D., Oyallon, J., Morin-Poulard, I., Dejean, S., Vincent, A., Crozatier, M.: Size control of the Drosophila hematopoietic niche by bone morphogenetic protein signaling reveals parallels with mammals. Proc. Natl. Acad. Sci. U. S. A. 109, 3389–3394 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  112. You, J., Zhang, Y., Li, Z., Lou, Z., Jin, L., Lin, X.: Drosophila perlecan regulates intestinal stem cell activity via cell-matrix attachment. Stem Cell Reports. 2, 761–769 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Guo, Y., Li, Z., Lin, X.: Hs3st-a and Hs3st-B regulate intestinal homeostasis in Drosophila adult midgut. Cell. Signal. 26, 2317–2325 (2014)

    CAS  PubMed  Google Scholar 

  114. Takemura, M., Nakato, H.: Drosophila Sulf1 is required for the termination of intestinal stem cell division during regeneration. J. Cell Sci. 130, 332–343 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Park, Y., Rangel, C., Reynolds, M.M., Caldwell, M.C., Johns, M., Nayak, M., Welsh, C.J., McDermott, S., Datta, S.: Drosophila perlecan modulates FGF and hedgehog signals to activate neural stem cell division. Dev. Biol. 253, 247–257 (2003)

    CAS  PubMed  Google Scholar 

  116. Cho, J.Y., Chak, K., Andreone, B.J., Wooley, J.R., Kolodkin, A.L.: The extracellular matrix proteoglycan perlecan facilitates transmembrane semaphorin-mediated repulsive guidance. Genes Dev. 26, 2222–2235 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kanai, M., Kim, M.J., Akiyama, T., Takemura, M., Wharton, K., O'Connor, M.B., Nakato, H.: Regulation of neuroblast proliferation by surface glia in the Drosophila larval brain. Sci. Rep. 8, 3730 (2018)

    PubMed  PubMed Central  Google Scholar 

  118. Smart, A.D., Course, M.M., Rawson, J., Selleck, S., Van Vactor, D., Johnson, K.G.: Heparan sulfate proteoglycan specificity during axon pathway formation in the Drosophila embryo. Dev Neurobiol. 71, 608–618 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Poe, A.R., Tang, L., Wang, B., Li, Y., Sapar, M.L., Han, C.: Dendritic space-filling requires a neuronal type-specific extracellular permissive signal in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 114, E8062–E8071 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Reynolds-Peterson, C.E., Zhao, N., Xu, J., Serman, T.M., Xu, J., Selleck, S.B.: Heparan sulfate proteoglycans regulate autophagy in Drosophila. Autophagy. 13, 1262–1279 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Pérez-Moreno, J.J., Bischoff, M., Martín-Bermudo, M.D., Estrada, B.: The conserved transmembrane proteoglycan Perdido/Kon-tiki is essential for myofibrillogenesis and sarcomeric structure in Drosophila. J. Cell Sci. 127, 3162–3173 (2014)

    PubMed  PubMed Central  Google Scholar 

  122. Losada-Perez, M., Harrison, N., Hidalgo, A.: Molecular mechanism of central nervous system repair by the Drosophila NG2 homologue kon-tiki. J. Cell Biol. 214, 587–601 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kohyama-Koganeya, A., Nabetani, T., Miura, M., Hirabayashi, Y.: Glucosylceramide synthase in the fat body controls energy metabolism in Drosophila. J. Lipid Res. 52, 1392–1399 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Dahlgaard, K., Jung, A., Qvortrup, K., Clausen, H., Kjaerulff, O., Wandall, H.H.: Neurofibromatosis-like phenotype in Drosophila caused by lack of glucosylceramide extension. Proc. Natl. Acad. Sci. U. S. A. 109, 6987–6992 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Gerdøe-Kristensen, S., Lund, V.K., Wandall, H.H., Kjaerulff, O.: Mactosylceramide prevents glial cell overgrowth by inhibiting insulin and fibroblast growth factor receptor signaling. J. Cell. Physiol. 232, 3112–3127 (2017)

    PubMed  Google Scholar 

  126. Hamel, S., Fantini, J., Schweisguth, F.: Notch ligand activity is modulated by glycosphingolipid membrane composition in Drosophila melanogaster. J. Cell Biol. 188, 581–594 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Yamamoto-Hino, M., Abe, M., Shibano, T., Setoguchi, Y., Awano, W., Ueda, R., Okano, H., Goto, S.: Cisterna-specific localization of glycosylation-related proteins to the Golgi apparatus. Cell Struct. Funct. 37, 55–63 (2012)

    CAS  PubMed  Google Scholar 

  128. Chang, W.L., Chang, C.W., Chang, Y.Y., Sung, H.H., Lin, M.D., Chang, S.C., Chen, C.H., Huang, C.W., Tung, K.S., Chou, T.B.: The Drosophila GOLPH3 homolog regulates the biosynthesis of heparan sulfate proteoglycans by modulating the retrograde trafficking of exostosins. Development. 140, 2798–2807 (2013)

    PubMed  Google Scholar 

  129. Climer, L.K., Dobretsov, M., Lupashin, V.: Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function. Front. Neurosci. 9, 405 (2015)

    PubMed  PubMed Central  Google Scholar 

  130. Frappaolo, A., Sechi, S., Kumagai, T., Robinson, S., Fraschini, R., Karimpour-Ghahnavieh, A., Belloni, G., Piergentili, R., Tiemeyer, K.H., Tiemeyer, M., Giansanti, M.G.: COG7 deficiency in Drosophila generates multifaceted developmental, behavioral and protein glycosylation phenotypes. J. Cell Sci. 130, 3637–3649 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Royet, J., Gupta, D., Dziarski, R.: Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat. Rev. Immunol. 11, 837–851 (2011)

    CAS  PubMed  Google Scholar 

  132. Iatsenko, I., Kondo, S., Mengin-Lecreulx, D., Lemaitre, B.: PGRP-SD, an extracellular pattern-recognition receptor, enhances peptidoglycan-mediated activation of the Drosophila Imd pathway. Immunity. 15, 1013–1023 (2016)

    Google Scholar 

  133. Schleifer, K.H., Kandler, O.: Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407–477 (1972)

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Costechareyre, D., Capo, F., Fabre, A., Chaduli, D., Kellenberger, C., Roussel, A., Charroux, B., Royet, J.: Tissue-specific regulation of Drosophila NF-κB pathway activation by peptidoglycan recognition protein SC. J Innate Immun. 8, 67–80 (2016)

    CAS  PubMed  Google Scholar 

  135. Yamamoto-Hino, M., Muraoka, M., Kondo, S., Ueda, R., Okano, H., Goto, S.: Dynamic regulation of innate immune responses in Drosophila by Senju-mediated glycosylation. Proc. Natl. Acad. Sci. U. S. A. 112, 5809–5814 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Paik, D., Monahan, A., Caffrey, D.R., Ellin, R., Goldman, W.E., Silverman, N.: SLC46 family transporters facilitate cytosolic innate immune recognition of monomeric peptidoglycans. J. Immunol. 199, 263–270 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lele, D.S., Kaur, G., Thiruvikraman, M., Kaur, K.J.: Comparing naturally occurring glycosylated forms of proline rich antibacterial peptide. Drosocin. Glycoconj J. 34, 613–624 (2017)

    CAS  PubMed  Google Scholar 

  138. Kurz, C.L., Charroux, B., Chaduli, D., Viallat-Lieutaud, A., Royet, J.: Peptidoglycan sensing by octopaminergic neurons modulates Drosophila oviposition. Elife. 6, e21937 (2017)

    PubMed  PubMed Central  Google Scholar 

  139. Frenkel-Pinter, M., Stempler, S., Tal-Mazaki, S., Losev, Y., Singh-Anand, A., Escobar-Álvarez, D., Lezmy, J., Gazit, E., Ruppin, E., Segal, D.: Altered protein glycosylation predicts Alzheimer’s disease and modulates its pathology in disease model Drosophila. Neurobiol. Aging. 56, 159–171 (2017)

    CAS  PubMed  Google Scholar 

  140. Ryan, E.L., DuBoff, B., Feany, M.B., Fridovich-Keil, J.L.: Mediators of a long-term movement abnormality in a Drosophila melanogaster model of classic galactosemia. Dis. Model. Mech. 5, 796–803 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Jumbo-Lucioni, P., Parkinson, W., Broadie, K.: Overelaborated synaptic architecture and reduced synaptomatrix glycosylation in a Drosophila classic galactosemia disease model. Dis Model Mech. 7, 1365–1378 (2014)

    PubMed  PubMed Central  Google Scholar 

  142. de Vreede, G., Morrison, H.A., Houser, A.M., Boileau, R.M., Andersen, D., Colombani, J., Bilder, D.: A Drosophila tumor suppressor gene prevents tonic TNF signaling through receptor N-glycosylation. Dev. Cell. 45, 595–605 (2018)

    PubMed  PubMed Central  Google Scholar 

  143. Parkinson, W.M., Dookwah, M., Dear, M.L., Gatto, C.L., Aoki, K., Tiemeyer, M., Broadie, K.: Synaptic roles for phosphomannomutase type 2 in a new Drosophila congenital disorder of glycosylation disease model. Dis Model Mech. 9, 513–527 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author’s works cited in this review were supported in part by JSPS KAKENHI Grant Number JP16K15505 and JST-Mirai Program Grant Number JPMJMI18GB, Japan. I thank GlyCosmos for providing FlyGlycoDB, Glycan related Drosophila gene database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoko Nishihara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishihara, S. Functional analysis of glycosylation using Drosophila melanogaster. Glycoconj J 37, 1–14 (2020). https://doi.org/10.1007/s10719-019-09892-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-019-09892-0

Keywords

Navigation