Skip to main content
Log in

MR-Guided Percutaneous Intradiscal Thermotherapy (MRgPIT): Evaluation of a New Technique for the Treatment of Degenerative Disc Disease in Cadaveric Lumbar Spine

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

Evaluation of MR feasibility and real-time control of an innovative thermoablative applicator for intradiscal thermotherapy and histological analysis of laser annuloplasty in human ex vivo intervertebral discs.

Materials and Methods

We evaluated a new MR-compatible applicator system for MR-guided percutaneous intradiscal thermotherapy (MRgPIT) in an open 1.0-T MRI-system. Needle artefacts and contrast-to-noise ratios (CNR) of six interactive sequences (PD-, T1-, T2w TSE, T1-, T2w GRE, bSSFP) with varying echo-times (TE) and needle orientations to the main magnetic field (B0) were analysed. Additionally, five laser protocols (Nd: YAG Laser, 2–6 W) were assessed in 50 ex vivo human intervertebral discs with subsequent histological evaluation.

Results

In vitro, we found optimal needle artefacts of 1.5–5 mm for the PDw TSE sequence in all angles of the applicator system to B0. A TE of 20 ms yielded the best CNR. Ex vivo, ablating with 5 W induced histological denaturation of collagen at the dorsal annulus, correlating with a rise in temperature to at least 60 °C. The MRgPIT procedure was feasible with an average intervention time of 17.1 ± 5.7 min.

Conclusion

Real-time MR-guided positioning of the MRgPIT-applicator in cadaveric intervertebral disc is feasible and precise using fast TSE sequence designs. Laser-induced denaturation of collagen in the dorsal annulus fibrosus proved to be accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

Acq. Matrix:

Acquisition matrix

B 0 :

Main magnetic field

bSSFP:

Balanced steady state free precession

CNR:

Contrast-to-noise ratio

FA:

Flip angel

FOV:

Field of view

G:

Gauge

GRE:

Gradient echo

Hz:

Hertz

IDET:

Intradiscal electrothermal therapy

IC I:

Inner cannula I

IC II:

Inner cannula II

LBP:

Low back pain

min:

Minute

mm:

Millimeter

MRgPIT:

MR-guided percutaneous intradiscal thermotherapy

NOS:

Number of scans

NSA:

Number of signal averages

OC:

Outer cannula

oMRT:

Open MRI

PD:

Proton density

PLDD:

Percutaneous laser discus decompression

ROI:

Region of interest

s:

Second

SD:

Standard deviation

SE:

Spin echo

SNR:

Signal to noise ratio

T1:

Longitudinal relaxation time

T2:

Transverse relaxation time

T:

Tesla

TA:

Time of acquisition

TE:

Echo time

TR:

Time of repetition

TSE:

Turbo spin echo

W:

Watt

W eff :

Effective power output in watt

References

  1. Schmidt CO, Raspe H, Pfingsten M, Hasenbring M, Basler HD, Eich W, Kohlmann T. Back pain in the German adult population: prevalence, severity, and sociodemographic correlates in a multiregional survey. Spine (Phila Pa 1976). 2007;32(18):2005–11.

    Article  Google Scholar 

  2. Wenig CM, Schmidt CO, Kohlmann T, Schweikert B. Costs of back pain in Germany. Eur J Pain. 2009;13(3):280–6.

    Article  Google Scholar 

  3. Saal JS, Saal JA. Management of chronic discogenic low back pain with a thermal intradiscal catheter. A preliminary report. Spine (Phila Pa 1976). 2000;25(3):382–8.

    Article  CAS  Google Scholar 

  4. Choy DS, Case RB, Fielding W, Hughes J, Liebler W, Ascher P. Percutaneous laser nucleolysis of lumbar disks. N Engl J Med. 1987;317(12):771–2.

    Article  CAS  Google Scholar 

  5. Choy DS. Percutaneous laser disc decompression: a 17-year experience. Photomed Laser Surg. 2004;22(5):407–10.

    Article  Google Scholar 

  6. Kleinstueck FS, Diederich CJ, Nau WH, Puttlitz CM, Smith JA, Bradford DS, Lotz JC. Temperature and thermal dose distributions during intradiscal electrothermal therapy in the cadaveric lumbar spine. Spine (Phila Pa 1976). 2003;28(15):1700–8 (discussion 1709).

    Google Scholar 

  7. Streitparth F, Walter T, Wonneberger U, Schnackenburg B, Philipp CM, Collettini F, Teichgraber UK, Gebauer B. MR guidance and thermometry of percutaneous laser disc decompression in open MRI: an ex vivo study. Cardiovasc Intervent Radiol. 2014;37(3):777–83.

    Article  Google Scholar 

  8. Streitparth F, Disch AC. Interventions on the intervertebral discs. Indications, techniques and evidence levels. Radiologe. 2015;55(10):868–77.

    Article  CAS  Google Scholar 

  9. Streitparth F, Althoff C, Jonczyk M, Guettler F, Maurer M, Rathke H, Sponheuer KM, Hamm B, Teichgraber UK, de Bucourt M. Tailored interactive sequences for continuous MR-image-guided freehand biopsies of different organs in an open system at 1.0 tesla (T)—initial experience. Biomed Tech (Berl). 2017;62:557–63.

    Article  Google Scholar 

  10. Streitparth F, De Bucourt M, Hartwig T, Leidenberger T, Rump J, Walter T, Maurer M, Renz D, Stelter L, Wiener E, et al. Real-time MR-guided lumbosacral periradicular injection therapy using an open 1.0-T MRI system: an outcome study. Investig Radiol. 2013;48(6):471–6.

    Article  Google Scholar 

  11. Weeks EM, Platt MW, Gedroyc W. MRI-guided focused ultrasound (MRgFUS) to treat facet joint osteoarthritis low back pain–case series of an innovative new technique. Eur Radiol. 2012;22(12):2822–35.

    Article  Google Scholar 

  12. Streitparth F, Hartwig T, Walter T, De Bucourt M, Putzier M, Strube P, Bretschneider T, Freyhardt P, Maurer M, Renz D, et al. MR guidance and thermometry of percutaneous laser disc decompression in open MRI: an initial clinical investigation. Eur Radiol. 2013;23(10):2739–46.

    Article  Google Scholar 

  13. Streitparth F, Walter T, Wonneberger U, Chopra S, Wichlas F, Wagner M, Hermann KG, Hamm B, Teichgraber U. Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features. Eur Radiol. 2010;20(2):395–403.

    Article  CAS  Google Scholar 

  14. Fritz J, Pereira PL. MR-guided pain therapy: principles and clinical applications. Rofo. 2007;179(9):914–24.

    Article  CAS  Google Scholar 

  15. Wonneberger U, Schnackenburg B, Streitparth F, Walter T, Rump J, Teichgraber UK. Evaluation of magnetic resonance imaging-compatible needles and interactive sequences for musculoskeletal interventions using an open high-field magnetic resonance imaging scanner. Cardiovasc Intervent Radiol. 2010;33(2):346–51.

    Article  Google Scholar 

  16. Fitch DA, de Ana J. Thermal phantom of the intervertebral disc for evaluating intradiscal electrothermal therapies. Spine (Phila Pa 1976). 2011;36(2):118–23.

    Article  Google Scholar 

  17. Freeman BJ, Walters RM, Moore RJ, Fraser RD. Does intradiscal electrothermal therapy denervate and repair experimentally induced posterolateral annular tears in an animal model? Spine (Phila Pa 1976). 2003;28(23):2602–8.

    Article  Google Scholar 

  18. Fyllos AH, Arvanitis DL, Karantanas AH, Varitimidis SE, Hantes M, Zibis AH. Magnetic resonance morphometry of the adult normal lumbar intervertebral space. Surg Radiol Anat. 2018;40(9):1055–61.

    Article  Google Scholar 

  19. Korovessis P, Repantis T, Zacharatos S, Baikousis A. Low back pain and sciatica prevalence and intensity reported in a Mediterranean country: ordinal logistic regression analysis. Orthopedics. 2012;35(12):e1775–84.

    Article  Google Scholar 

  20. Vulfsons S, Bar N, Eisenberg E. Back pain with leg pain. Curr Pain Headache Rep. 2017;21(7):32.

    Article  Google Scholar 

  21. Manchikanti L, Abdi S, Atluri S, Benyamin RM, Boswell MV, Buenaventura RM, Bryce DA, Burks PA, Caraway DL, Calodney AK, et al. An update of comprehensive evidence-based guidelines for interventional techniques in chronic spinal pain. Part II: guidance and recommendations. Pain Physician. 2013;16(2 Suppl):S49–283.

    PubMed  Google Scholar 

  22. Manchikanti L, Boswell MV, Singh V, Benyamin RM, Fellows B, Abdi S, Buenaventura RM, Conn A, Datta S, Derby R, et al. Comprehensive evidence-based guidelines for interventional techniques in the management of chronic spinal pain. Pain Physician. 2009;12(4):699–802.

    PubMed  Google Scholar 

  23. Kelekis AD, Filippiadis DK, Martin JB, Brountzos E. Standards of practice: quality assurance guidelines for percutaneous treatments of intervertebral discs. Cardiovasc Intervent Radiol. 2010;33(5):909–13.

    Article  Google Scholar 

  24. Appleby D, Andersson G, Totta M. Meta-analysis of the efficacy and safety of intradiscal electrothermal therapy (IDET). Pain Med. 2006;7(4):308–16.

    Article  Google Scholar 

  25. Andersson GB, Mekhail NA, Block JE. Treatment of intractable discogenic low back pain. A systematic review of spinal fusion and intradiscal electrothermal therapy (IDET). Pain Physician. 2006;9(3):237–48.

    PubMed  Google Scholar 

  26. Tassi GP. Comparison of results of 500 microdiscectomies and 500 percutaneous laser disc decompression procedures for lumbar disc herniation. Photomed Laser Surg. 2006;24(6):694–7.

    Article  Google Scholar 

  27. Brouwer PA, Brand R, van den Akker-van Marle ME, Jacobs WC, Schenk B, van den Berg-Huijsmans AA, Koes BW, van Buchem MA, Arts MP, Peul WC. Percutaneous laser disc decompression versus conventional microdiscectomy in sciatica: a randomized controlled trial. Spine J. 2015;15(5):857–65.

    Article  Google Scholar 

  28. Singh V, Manchikanti L, Calodney AK, Staats PS, Falco FJ, Caraway DL, Hirsch JA, Cohen SP. Percutaneous lumbar laser disc decompression: an update of current evidence. Pain Physician. 2013;16(2 Suppl):SE229–60.

    PubMed  Google Scholar 

  29. Pauza KJ, Howell S, Dreyfuss P, Peloza JH, Dawson K, Bogduk N. A randomized, placebo-controlled trial of intradiscal electrothermal therapy for the treatment of discogenic low back pain. Spine J. 2004;4(1):27–35.

    Article  Google Scholar 

  30. Fritz J, Thomas C, Clasen S, Claussen CD, Lewin JS, Pereira PL. Freehand real-time MRI-guided lumbar spinal injection procedures at 1.5 T: feasibility, accuracy, and safety. AJR Am J Roentgenol. 2009;192(4):W161–7.

    Article  Google Scholar 

  31. Streitparth F, Knobloch G, Balmert D, Chopra S, Rump J, Wonneberger U, Philipp C, Hamm B, Teichgraber U. Laser-induced thermotherapy (LITT)–evaluation of a miniaturised applicator and implementation in a 1.0-T high-field open MRI applying a porcine liver model. Eur Radiol. 2010;20(11):2671–8.

    Article  Google Scholar 

  32. Streitparth F, Gebauer B, Melcher I, Schaser K, Philipp C, Rump J, Hamm B, Teichgraber U. MR-guided laser ablation of osteoid osteoma in an open high-field system (1.0 T). Cardiovasc Intervent Radiol. 2009;32(2):320–5.

    Article  CAS  Google Scholar 

  33. Streitparth F, Hartwig T, Schnackenburg B, Strube P, Putzier M, Chopra S, De Bucourt M, Hamm B, Teichgraber U. MR-guided discography using an open 1 Tesla MRI system. Eur Radiol. 2011;21(5):1043–9.

    Article  Google Scholar 

  34. Makowski MR, Jonczyk M, Streitparth F, Guettler F, Rathke H, Suttmeyer B, Albrecht L, Teichgraber UK, Hamm B, de Bucourt M. Interactive near-real-time high-resolution imaging for MR-guided lumbar interventions using ZOOM imaging in an open 10 Tesla MRI system—initial experience. Biomed Tech (Berl). 2015;60(6):533–9.

    Article  Google Scholar 

  35. Rump JC, Streitparth F, Boning G, Seebauer CJ, Walter T, Guttler F, Hamm B, Teichgraber UK. Evaluation of a MR-quadrupole imaging coil for spinal interventions in a vertical 1.0 T MRI. Magn Reson Med. 2012;68(2):600–5.

    Article  Google Scholar 

  36. Bono CM, Iki K, Jalota A, Dawson K, Garfin SR. Temperatures within the lumbar disc and endplates during intradiscal electrothermal therapy: formulation of a predictive temperature map in relation to distance from the catheter. Spine. 2004;29(10):1124–9 (discussion 1130–1121).

    Article  Google Scholar 

Download references

Funding

This work was supported in part by grants from the Technologiestiftung Berlin - Zukunftsfonds Berlin (TSB) and the EUs European Fund for Regional Development (Grant 10132816/10134231).

Author information

Authors and Affiliations

Authors

Contributions

TL contributed to design and conduction of experimental work, development of MRgPIT-applicator, writing of the manuscript. AW contributed to development of MRgPIT-applicator. CP contributed to design and conduction of experimental work with regards to laser applications. JR contributed to design and conduction of experimental work with regards to artefacts. MB contributed to advisory function. GB contributed to advisory function. UT contributed to study design, advisory function, development of MRgPIT-applicator. FS contributed to study design, design and conduction of experimental work, development of MRgPIT-applicator, advisory function, revision of manuscript.

Corresponding author

Correspondence to T. Leidenberger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical Approval

All procedures performed in this study involving human ex vivo participants were in accordance with the ethical standards of our ethics committee (ethics committee Charité – Universitätsmedizin Berlin, reference numbers EA1/071/09, EA1/301/12) and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leidenberger, T., Winkel, A., Philipp, C. et al. MR-Guided Percutaneous Intradiscal Thermotherapy (MRgPIT): Evaluation of a New Technique for the Treatment of Degenerative Disc Disease in Cadaveric Lumbar Spine. Cardiovasc Intervent Radiol 43, 505–513 (2020). https://doi.org/10.1007/s00270-019-02382-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-019-02382-8

Keywords

Navigation