Skip to main content
Log in

Molecular mapping of major QTL conferring resistance to orange wheat blossom midge (Sitodiplosis mosellana) in Chinese wheat varieties with selective populations

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Two novel midge resistance QTL were mapped to a 4.9-Mb interval on chromosome arm 4AL based on the genetic maps constructed with SNP markers.

Abstract

Orange wheat blossom midge (OWBM) is a devastating insect pest affecting wheat production. In order to detect OWBM resistance genes and quantitative trait loci (QTL) for wheat breeding, two recombinant inbred line (RIL) populations were established and used for molecular mapping. A total of seven QTL were detected on chromosomes 2D, 4A, 4D and 7D, respectively, of which positive alleles were all from the resistant parents except for the QTL on 7D. Two stable QTL (QSm.hbau-4A.2-1 and QSm.hbau-4A.2-2) were detected in both populations with the LOD scores ranging from 5.58 to 29.22 under all three environments, and they explained a combined phenotypic variation of 24.4–44.8%. These two novel QTL were mapped to a 4.9-Mb physical interval. The single-nucleotide polymorphism (SNP) markers AX-109543456, AX-108942696 and AX-110928325 were closely linked to the QTL and could be used for marker-assisted selection (MAS) for OWBM resistance in wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

EST:

Expressed sequence tag

ICIM:

Inclusive composite interval mapping

KASP:

Kompetitive allele specific PCR

LOD:

Logarithm of odds

MAS:

Marker-assisted selection

NIL:

Near-isogenic line

QTL:

Quantitative trait loci

RIL:

Recombinant inbred line

SNP:

Single-nucleotide polymorphism

SSR:

Simple sequence repeat

OWBM:

Orange wheat blossom midge

References

  • Abdel-Aal ESM, Hucl P, Sosulski FW, Graf R, Gillott C, Pietrzak L (2001) Screening spring wheat for midge resistance in relation to ferulic acid content. J Agric Food Chem 49:3559–3566

    Article  CAS  PubMed  Google Scholar 

  • An XJ (2015) QTL mapping for Sitodiplosismosellana (Géhin) resistance in bread wheat (Triticum aestivum L.) Dissertation, Hebei Agricultural University (in Chinese)

  • An XJ, Cui CL, Wu HN, Wang YJ, Liu GR (2014) Correlation analysis on resistance to Sitodiplosismosellana (Géhin) and main agronomic traits in winter wheat. J Triticeae Crops 34:1490–1494 (in Chinese)

    Google Scholar 

  • Berzonsky WA, Ding H, Haley SD, Harris MO, Lamb RJ, McKenzie RIH, Ohm HW, Patterson FL, Peairs FB, Porter DR, Ratcliffe RH, Shanower TG (2003) Breeding wheat for resistance to insects. Plant Breed Rev 22:221–296

    Google Scholar 

  • Blake NK, Stougaard RN, Weaver DK, Sherman JD, Lanning SP, Naruoka Y, Xue Q, Martin JM, Talbert LE (2011) Identification of a quantitative trait locus for resistance to Sitodiplosis mosellana (Géhin), the orange wheat blossom midge, in spring wheat. Plant Breed 130:25–30

    Article  CAS  Google Scholar 

  • Blake NK, Stougaard RN, Bohannon B, Weaver DK, Heo HY, Lamb PF, Nash D, Wichman DM, Kephart KD, Miller JH, Reddy GVP, Eckhoff JL, Grey WE, Lanning SP, Sherman JD, Talbert LE (2014) Registration of ‘Egan’ wheat with resistance to orange wheat blossom midge. J Plant Regist 8:298–302

    Article  Google Scholar 

  • Bruce TJA, Hooper AM, Ireland L, Jones OT, Martin JL, Smart LE, Oakley J, Wadhams LJ (2007) Development of a pheromone trap monitoring system for orange wheat blossom midge, Sitodiplosis mosellana, in the UK. Pest Manag Sci 63:49–56

    Article  CAS  PubMed  Google Scholar 

  • Chavalle S, Jacquemin G, De Proft M (2017) Assessing cultivar resistance to Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) using a phenotyping method under semi-field conditions. J Appl Entomol 141:780–785

    Article  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond 363:557–572

    Article  CAS  Google Scholar 

  • Cui Y, Zhang F, Xu J, Li Z, Xu S (2015) Mapping quantitative trait loci in selected breeding populations: A segregation distortion approach. Heredity 115:538–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darvasi A, Soller M (1992) Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor Appl Genet 85:353–359

    Article  CAS  PubMed  Google Scholar 

  • DePauw RM, Knox RE, Thomas JB, Smith M, Clarke JM, Clarke FR, McCaig TN, Fernandez MR (2009) Goodeve hard red spring wheat. Can J Plant Sci 89:937–944

    Article  Google Scholar 

  • Ding H, Lamb RJ, Ames N (2000) Inducible production of phenolic acids in wheat and antibiotic resistance to Sitodiplosis mosellana. J Chem Ecol 26:969–985

    Article  CAS  Google Scholar 

  • Duan Y, Jiang YL, Miao J, Gong ZJ, Li T, Wu YQ, Luo LZ (2013) Occurrence, damage and control of the wheat midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae), in China. Acta Entomologica Sinica 56:1359–1366 (in Chinese)

    Google Scholar 

  • Dvorak J, Wang L, Zhu TT, Jorgensen CM, Luo MC, Deal KR, Gu YQ, Gill BS, Distelfeld A, Devos KM, Qi P, McGuire PE (2018) Reassessment of the evolution of wheat chromosomes 4A, 5A, and 7B. Theor Appl Genet 131:2451–2462

    Article  PubMed  PubMed Central  Google Scholar 

  • Echegaray ER, Barbour CR, Talbert L, Stougaard RN (2018) Evaluation of Sitodiplosis mosellana (Diptera: Cecidomyiidae) infestation and relationship with agronomic traits in selected spring wheat cultivars in northwestern Montana, United States of America. Can Entomol 150:675–683

    Article  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontanesi L, Schiavo G, Galimberti G, Calò DG, Scotti E, Martelli PL, Buttazzoni L, Casadio R, Russo V (2012) A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes. BMC Genom 13:583

    Article  CAS  Google Scholar 

  • Foolad MR, StoltzT Dervinis C, Rodriguez RL, Jones RA (1997) Mapping QTLs conferring salt tolerance during germination in tomato by selective genotyping. Mol Breeding 3:269–277

    Article  CAS  Google Scholar 

  • Fowler KE, Pong-Wong R, Bauer J, Clemente EJ, Reitter CP, Affara NA, Waite S, Walling GA, Griffin DK (2013) Genome wide analysis reveals single nucleotide polymorphisms associated with fatness and putative novel copy number variants in three pig breeds. BMC Genom 14:784

    Article  CAS  Google Scholar 

  • Fox SL, Lamb RJ, McKenzie RIH, Wise IL, Smith MAH, Humphreys DG, Brown PD, Townley-Smith TF, McCallum BD, Fetch TG, Menzies JG, Gilbert JA, Fernandez MR, Despins T, Lukow O, Niziol D (2012) Registration of ‘Fieldstar’ hard red spring wheat. J Plant Regist 6:161–168

    Article  Google Scholar 

  • Gaafar N, Volkmar C, Cöster H, Spilke J (2011a) Susceptibility of winter wheat cultivars to wheat ear insects in central Germany. Gesunde Pflanzen 62:107–115

    Article  Google Scholar 

  • Gaafar N, Wakeil AE, Volkmar C (2011b) Assessment of wheat ear insects in winter wheat varieties in central Germany. J Pest Sci 84:49–59

    Article  Google Scholar 

  • Gallais A, Moreau L, Charcosset A (2007) Detection of marker-QTL associations by studying change in marker frequencies with selection. Theor Appl Genet 114:669–681

    Article  CAS  PubMed  Google Scholar 

  • Gharalari AH, Fox SL, Smith MAH, Lamb RJ (2009) Oviposition deterrence in spring wheat, Triticum aestivum, against orange wheat blossom midge, Sitodiplosis mosellana: implications for inheritance of deterrence. Entomol Exp Appl 133:74–83

    Article  Google Scholar 

  • Hao YR, Wen SM, Wang RH, An XJ, Liu GR (2017) QTL analysis for midge resistance in wheat cultivar Jimai24. J Plant Genet Resour 18:933–938 (in Chinese)

    Google Scholar 

  • Hao ZM, Geng MM, Hao YR, Zhang Y, Zhang LJ, Wen SM, Wang RH, Liu GR (2019) Screening for differential expression of genes for resistance to Sitodiplosis mosellana in bread wheat via BSR-seq analysis. Theor Appl Genet. https://doi.org/10.1007/s00122-019-03419-9

    Article  PubMed  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquemin G, Chavalle S, De Proft M (2014) Forecasting the emergence of the adult orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) in Belgium. Crop Prot 58:6–13

    Article  Google Scholar 

  • Jorgensen C, Luo MC, Ramasamy R, Dawson M, Gill BS, Korol AB, Distelfeld A, Dvorak J (2017) A high-density genetic map of wild emmer wheat from the Karaca dag region provides new evidence on the structure and evolution of wheat chromosomes. Front Plant Sci 8:1798

    Article  PubMed  PubMed Central  Google Scholar 

  • Kassa MT, Haas S, Schliephake E, Lewis C, You FM, Pozniak CJ, Krämer I, Perovic D, Sharpe AG, Fobert PR, Koch M, Wise IL, Fenwick P, Berry S, Simmonds J, Hourcade D, Senellart P, Duchalais L, Robert O, Förster J, Thomas JB, Friedt W, Ordon F, Uauy C, McCartney CA (2016) A saturated SNP linkage map for the orange wheat blossom midge resistance gene Sm1. Theor Appl Genet 129:1507–1517

    Article  CAS  PubMed  Google Scholar 

  • Knott DR, Kumar J (1975) Comparison of early generation yield testing and a single seed descent procedure in wheat breeding. Crop Sci 15:295–299

    Article  Google Scholar 

  • Kosambi D (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lamb RJ, Smith MAH, Wise IL, Clarke P (2001) Oviposition deterrence to Sitodiplosis mosellana (Diptera: Cecidomyiidae): a source of resistance for durum wheat (Gramineae). Can Entomol 133:579–591

    Article  Google Scholar 

  • Lamb RJ, Smith MAH, Wise IL, McKenzie RIH (2016) Resistance to wheat midge (Diptera: Cecidomyiidae) in winter wheat and the origins of resistance in spring wheat (Poaceae). Can Entomol 148:229–238

    Article  Google Scholar 

  • Liu JJ, Luo W, Qin NN, Ding PY, Zhang H, Yang CC, Mu Y, Tang HP, Liu YX, Li W, Jiang QT, Chen GY, Wei YM, Zheng YL, Liu CJ, Lan XJ, Jian Ma (2018) A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theor Appl Genet 131:2439–2450

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Kong J, Meng X, Cao B, Luo K, Dai P, Luan S (2018) Identification of SNP markers associated with tolerance to ammonia toxicity by selective genotyping from de novo assembled transcriptome in Litopenaeus vannamei. Fish Shellfish Immunol 73:158–166

    Article  CAS  PubMed  Google Scholar 

  • Masojć P, Wiśniewska M, Łań A, Milczarski P, Berdzik M, Pędziwiatr D, Pol-Szyszko M, Gałęza M, Owsianicki R (2011) Genomic architecture of alpha-amylase activity in mature rye grain relative to that of preharvest sprouting. J Appl Genet 52:153–160

    Article  CAS  PubMed  Google Scholar 

  • McKenzie RIH, Lamb RJ, Aung T, Wise IL, Barker P, Olfert OO (2002) Inheritance of resistance to wheat midge, Sitodiplosis mosellana, in spring wheat. Plant Breed 121:383–388

    Article  Google Scholar 

  • Meng L, Li HH, Zhang LY, Wang JK (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Article  Google Scholar 

  • Mindrebo JT, Nartey CM, Seto Y, Burkart MD, Noel JP (2016) Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom. Curr Opin Struct Biol 41:233–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myśków B, Stojałowski S (2016) Bidirectional selective genotyping approach for the identification of quantitative trait loci controlling earliness per se in winter rye (Secale cereale L.). J Appl Genet 57:45–50

    Article  PubMed  Google Scholar 

  • Navabi A, Mather DE, Bernier J, Spaner DM, Atlin GN (2009) QTL detection with bidirectional and unidirectional selective genotyping: marker-based and trait-based analyses. Theor Appl Genet 118:347–358

    Article  PubMed  Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995) Molecular mapping of wheat: major Genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oakley JN, Talbot G, Dyer C, Self MM, Freer JBS, Angus WJ, Barrett JM, Feuerhelm G, Snape J, Sayers L, Bruce TJA, Smart LE, Wadhams LJ (2005) Integrated control of wheat blossom midge: variety choice, use of pheromone traps and treatment thresholds. HGCA Project, Report363

  • Pozniak CJ, Clarke JM (2015) CDC Carbide durum wheat. Can J Plant Sci 95:150416081618009

    Google Scholar 

  • Qu ZG, Wen SM, Qu Y, Liu GR (2011) Evaluation and identification of wheat varieties resistant to Sitodiplosis mosellana. J Plant Genet Resour 12:121–124 (in Chinese)

    Google Scholar 

  • Randhawa HS, Asif M, Pozniak C, Clarke JM, Graf RJ, Fox SL, Humphreys DG, Knox RE, DePauw RM, Singh AK, Cuthbert RD, Hucl P, Spaner D, Gupta P (2013) Application of molecular markers to wheat breeding in Canada. Plant Breed 132:458–471

    CAS  Google Scholar 

  • Reinprecht Y, Arif M, Simon LC, Pauls KP (2015) Genome regions associated with functional performance of soybean stem fibers in polypropylene thermoplastic composites. PLoS ONE 10:e0130371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. Trends Biotechnol 16:168–175

    Article  CAS  Google Scholar 

  • Shi ZL, Qiu SY, Ma AP, Xu GY, Wu JP, Lu LH (2003) Studies on the resistance mechanism of wheat to wheat midge. Acta Agriculturae Boreali-Sinica 18:100–102 (in Chinese)

    Google Scholar 

  • Smith MAH, Wise IL, Fox SL, Vera CL, DePauw RM, Lukow OM (2014) Seed damage and sources of yield loss by Sitodiplosis mosellana (Diptera: Cecidomyiidae) in resistant wheat varietal blends relative to susceptible wheat cultivars in western Canada. Can Entomol 146:335–346

    Article  Google Scholar 

  • Su QN, Zhang XL, Zhang W, Zhang N, Song LQ, Liu L, Xue X, Liu GT, Liu JJ, Meng DY, Zhi LY, Ji J, Zhao XQ, Yang CL, Tong YP, Liu ZY, Li JM (2018) QTL detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Front Plant Sci 9:1484

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun JR, Ding HJ, Ni HX, Chen JL, Wang XY, Li SJ, Wang JL (1995) Evaluation of resistance in wheat varieties to wheat midge. Plant Protection 21:22–23 (in Chinese)

    Google Scholar 

  • Sun YP, Wang JK, Crouch JH, Xu YB (2010) Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement. Mol Breed 26:493–511

    Article  Google Scholar 

  • Thomas J, Fineberg N, Penner G, McCartney C, Aung T, Wise I, McCallum B (2005) Chromosome location and markers of Sm1: a gene of wheat that conditions antibiotic resistance to orange wheat blossom midge. Mol Breed 15:183–192

    Article  CAS  Google Scholar 

  • Van Ooijen JW (2006). JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, Wageningen

  • Vera CL, Fox SL, DePauw RM, Smith MAH, Wise IL, Clarke FR, Procunier JD, Lukow OM (2013) Relative performance of resistant wheat varietal blends and susceptible wheat cultivars exposed to wheat midge, Sitodiplosis mosellana (Géhin). Can J Plant Sci 93:59–66

    Article  CAS  Google Scholar 

  • Wen SM, Zhao YX, Qu ZG, Liu GR, Wang LL, Wang JY (2007) The utilization and evaluation of resistance in wheat varieties to Sitadiplosis mosellana. J Agric Univ Hebei 30:71–74 (in Chinese)

    Google Scholar 

  • Wingbermuehle WJ, Gustus C, Smith KP (2004) Exploiting selective genotyping to study genetic diversity of resistance to Fusarium head blight in barley. Theor Appl Genet 109:1160–1168

    Article  CAS  PubMed  Google Scholar 

  • Wise IL, Fox SL, Smith MAH (2015) Seed damage by Sitodiplosis mosellana (Diptera: Cecidomyiidae) to spring wheat cultivars with the Sm1 gene. Can Entomol 147:754–765

    Article  Google Scholar 

  • Wu YQ, Duan AJ, Zhang ZQ, Liu CY, Liu ST, Miao J, Gong ZJ, Duan Y, Jiang YL, Li T (2015) The synchronization of ear emerging stages of winter wheat with occurrent periods of the orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera:Cecidomyiidae) adults and its damaged level. Acta Ecol Sin 35:3548–3554 (in Chinese)

    Article  Google Scholar 

  • Wu QH, Chen YX, Fu L, Zhou SH, Chen JJ, Zhao XJ, Zhang D, Quyang SH, Wang ZZ, Li D, Wang GX, Zhang DY, Yuan CG, Wang LX, You MS, Han J, Liu ZY (2016) QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica 208:337–351

    Article  CAS  Google Scholar 

  • Yan L, Hofmann N, Li S, Ferreira ME, Song B, Jiang G, Ren S, Quigley C, Fickus E, Cregan P, Song Q (2017) Identification of QTL with large effect on seed weight in a selective population of soybean with genome-wide association and fixation index analyses. BMC Genom 18:529

    Article  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zhai HJ, Feng ZY, Li J, Liu XY, Xiao SH, Ni ZF, Sun QX (2016) QTL analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Front Plant Sci 7:1617

    PubMed  PubMed Central  Google Scholar 

  • Zhang LP, Lin GY, Niño-Liu D, Foolad MR (2003) Mapping QTL conferring early blight (Alternaria solani) resistance in a Lycopersicon esculentum × L. hirsutum cross by selective genotyping. Mol Breed 12:3–19

    Article  CAS  Google Scholar 

  • Zongo A, Khera P, Sawadogo M, Shasidhar Y, Sriswathi M, Vishwakarma MK, Sankara P, Ntare BR, Varshney RK, Pandey MK, Desmae H (2017) SSR markers associated to early leaf spot disease resistance through selective genotyping and single marker analysis in groundnut (Arachis hypogaea L.). Biotechnol Rep 15:132–137

    Article  Google Scholar 

  • Zou C, Wang PX, Xu YB (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J 14:1941–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Xinming Yang (Institute of Crop Sciences, Chinese Academy of Agricultural Sciences) for supplying the pedigree of some wheat varieties, Dr. Guangyao Zhao (Institute of Crop Sciences, Chinese Academy of Agricultural Sciences) for his advice in comparative genomic analysis, Prof. Zhengang Qu (Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences) for his advice in the identification of OWBM resistance, Dr. Yanru Cui (Hebei Agricultural University) for her help in selective population analysis and her careful review for this paper.

Funding

This work was supported by National Natural Science Foundation of China (31371617).

Author information

Authors and Affiliations

Authors

Contributions

LZ and RW designed and conducted the study. MG, GY, SW and GL provided advice to the authors. SW, GL and RW performed RIL population construction. GL and RW performed OWBM invasion treatment and analyzed resistance index. LZ and ZZ performed experimental material collection for SNP genotyping. LZ, ZZ and YZ performed resistance evaluation.

Corresponding authors

Correspondence to Guiru Liu or Ruihui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All research conducted in relation to this publication is in compliance with ethical standards. The authors declare that this study was performed and reported in accordance with the ethical standards of scientific conduct.

Additional information

Communicated by Steven S. Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Geng, M., Zhang, Z. et al. Molecular mapping of major QTL conferring resistance to orange wheat blossom midge (Sitodiplosis mosellana) in Chinese wheat varieties with selective populations. Theor Appl Genet 133, 491–502 (2020). https://doi.org/10.1007/s00122-019-03480-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03480-4

Navigation