Skip to main content
Log in

X-ray CT in Phase Contrast Enhancement Geometry of Alginate Microbeads in a Whole-Animal Model

  • Bioengineering and Enabling Technologies
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Imaging soft biomaterials in vivo is a significant challenge, as most conventional techniques are limited by biomaterial contrast, penetration depth, or spatial resolution. Exogeneous contrast agents used to increase contrast may also alter material properties or exhibit local toxicity. The capability to observe biomaterial constructs in vivo without introducing exogenous contrast would improve preclinical testing and evaluation. Conventional X-ray Computed Tomography allows fast, high-resolution imaging at high penetration depth, but biomaterial contrast is low. Previous studies employing X-ray phase contrast (XPC) and utilizing a synchrotron source provided support for the significant potential of XPC in imaging biomaterials without contrast agents. In this study, XPC tomography was used to image alginate hydrogel microspheres within a small animal omental pouch model using a commercially available X-ray source. Multilayer microbeads could be identified in the XPC images with volumetric and structural information not possible in histological analysis. The number of microbeads present and microbead volume and diameter could be quantified from the images. The results of this study show that XPC tomography can be a useful tool for monitoring of implanted soft biomaterials in small animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Appel, A., M. A. Anastasio, and E. M. Brey. Potential for imaging engineered tissues with X-ray phase contrast. Tissue Eng. Part B 17:321–330, 2011.

    Article  CAS  Google Scholar 

  2. Appel, A. A., M. A. Anastasio, J. C. Larson, and E. M. Brey. Imaging challenges in biomaterials and tissue engineering. Biomaterials 34:6615–6630, 2013.

    Article  CAS  Google Scholar 

  3. Appel, A. A., V. Ibarra, S. I. Somo, J. C. Larson, A. B. Garson, 3rd, H. Guan, J. P. McQuilling, Z. Zhong, M. A. Anastasio, E. C. Opara, and E. M. Brey. Imaging of hydrogel microsphere structure and foreign body response based on endogenous X-ray phase contrast. Tissue Eng. Part C 22:1038–1048, 2016.

    Article  CAS  Google Scholar 

  4. Appel, A. A., J. C. Larson, S. Somo, Z. Zhong, P. P. Spicer, F. K. Kasper, A. B. Garson, 3rd, A. M. Zysk, A. G. Mikos, M. A. Anastasio, and E. M. Brey. Imaging of poly(alpha-hydroxy-ester) scaffolds with X-ray phase-contrast microcomputed tomography. Tissue Eng. Part C 18:859–865, 2012.

    Article  CAS  Google Scholar 

  5. Arifin, D. R., D. A. Kedziorek, Y. Fu, K. W. Chan, M. T. McMahon, C. R. Weiss, D. L. Kraitchman, and J. W. Bulte. Microencapsulated cell tracking. NMR Biomed. 26:850–859, 2013.

    Article  CAS  Google Scholar 

  6. Arifin, D. R., C. M. Long, A. A. Gilad, C. Alric, S. Roux, O. Tillement, T. W. Link, A. Arepally, and J. W. Bulte. Trimodal gadolinium-gold microcapsules containing pancreatic islet cells restore normoglycemia in diabetic mice and can be tracked by using us, ct, and positive-contrast mr imaging. Radiology 260:790–798, 2011.

    Article  Google Scholar 

  7. Chen, Y., and M. A. Anastasio. Properties of a joint reconstruction method for edge-illumination X-ray phase-contrast tomography. Sens. Imaging 19:7, 2018.

    Article  Google Scholar 

  8. Cormode, D. P., W. J. Mulder, and Z. A. Fayad. Science to practice: versatile method to track transplanted encapsulated islet cells with multiple imaging modalities. Radiology 258:1–2, 2011.

    Article  Google Scholar 

  9. Khanna, O., J. C. Larson, M. L. Moya, E. C. Opara, and E. M. Brey. Generation of alginate microspheres for biomedical applications. J. Vis. Exp. 66:e3388, 2012.

    Google Scholar 

  10. Khanna, O., M. L. Moya, E. C. Opara, and E. M. Brey. Synthesis of multilayered alginate microcapsules for the sustained release of fibroblast growth factor-1. J. Biomed. Mater. Res. Part A 95:632–640, 2010.

    Article  Google Scholar 

  11. Kim, J., D. R. Arifin, N. Muja, T. Kim, A. A. Gilad, H. Kim, A. Arepally, T. Hyeon, and J. W. Bulte. Multifunctional capsule-in-capsules for immunoprotection and trimodal imaging. Angew. Chem. Int. Ed. Engl. 50:2317–2321, 2011.

    Article  CAS  Google Scholar 

  12. Kollmer, M., A. A. Appel, S. I. Somo, and E. M. Brey. Long-term function of alginate-encapsulated islets. Tissue Eng. Part B 22:34–46, 2015.

    Article  Google Scholar 

  13. Mollenhauer, J., M. E. Aurich, Z. Zhong, C. Muehleman, A. A. Cole, M. Hasnah, O. Oltulu, K. E. Kuettner, A. Margulis, and L. D. Chapman. Diffraction-enhanced X-ray imaging of articular cartilage. Osteoarthr. Cartil. 10:163–171, 2002.

    Article  CAS  Google Scholar 

  14. Moya, M. L., S. Lucas, M. Francis-Sedlak, X. Liu, M. R. Garfinkel, J. J. Huang, M. H. Cheng, E. C. Opara, and E. M. Brey. Sustained delivery of fgf-1 increases vascular density in comparison to bolus administration. Microvasc. Res. 78:142–147, 2009.

    Article  CAS  Google Scholar 

  15. Moya, M. L., M. Morley, O. Khanna, E. C. Opara, and E. M. Brey. Stability of alginate microbead properties in vitro. J. Mater. Sci. Mater. Med. 23:903–912, 2012.

    Article  CAS  Google Scholar 

  16. Shokrollahi, H. Contrast agents for MRI. Mater. Sci. Eng. C 33:4485–4497, 2013.

    Article  CAS  Google Scholar 

  17. Somo, S. Synthesis and Evaluation of Stablized Alginate Microbeads, in Biomedical Engineering. Chicago: Illinois Institute of Technology, 2017.

    Google Scholar 

  18. Somo, S. I., O. Khanna, and E. M. Brey. Alginate microbeads for cell and protein delivery. Methods Mol. Biol. 1479:217–224, 2017.

    Article  CAS  Google Scholar 

  19. Somo, S. I., K. Langert, C. Y. Yang, M. K. Vaicik, V. Ibarra, A. A. Appel, B. Akar, M. H. Cheng, and E. M. Brey. Synthesis and evaluation of dual crosslinked alginate microbeads. Acta Biomater. 65:53–65, 2018.

    Article  CAS  Google Scholar 

  20. Veriter, S., J. Mergen, R. M. Goebbels, N. Aouassar, C. Gregoire, B. Jordan, P. Leveque, B. Gallez, P. Gianello, and D. Dufrane. In vivo selection of biocompatible alginates for islet encapsulation and subcutaneous transplantation. Tissue Eng. Part A 16:1503–1513, 2010.

    Article  CAS  Google Scholar 

  21. Zhu, N., D. Chapman, D. Cooper, D. J. Schreyer, and X. Chen. X-ray diffraction enhanced imaging as a novel method to visualize low-density scaffolds in soft tissue engineering. Tissue Eng. Part C 17:1071–1080, 2011.

    Article  CAS  Google Scholar 

  22. Zysk, A. M., A. B. Garson, 3rd, Q. Xu, E. M. Brey, W. Zhou, J. G. Brankov, M. N. Wernick, J. R. Kuszak, and M. A. Anastasio. Nondestructive volumetric imaging of tissue microstructure with benchtop X-ray phase-contrast tomography and critical point drying. Biomed. Opt. Express 3:1924–1932, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

This was work supported, in part, by funding from the National Institutes of Health (Grants 5R01EB020604), the National Science Foundation (CBET-1263994, IIS-1125412) and the Department of Veterans Affairs (5 I01 BX000418-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Brown.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, J., Somo, S., Brooks, F. et al. X-ray CT in Phase Contrast Enhancement Geometry of Alginate Microbeads in a Whole-Animal Model. Ann Biomed Eng 48, 1016–1024 (2020). https://doi.org/10.1007/s10439-019-02291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02291-4

Keywords

Navigation