Skip to main content

Advertisement

Log in

Mutation landscape and tumor mutation burden analysis of Chinese patients with pulmonary sarcomatoid carcinomas

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Introduction

Pulmonary sarcomatoid carcinoma (PSC) is a group of rare tumors with the presence of both cancerous and sarcoma components in tumor. In this study, we explore their cancer genomic background and the relationship with clinical prognosis.

Materials and methods

A cohort of 32 PSC patients were retrospectively collected from the First People’s Hospital of Changzhou between 2005 and 2016. Targeted next-generation sequencing (NGS) of 416 cancer-relevant genes was performed on 32 PSC tumors.

Results

EGFR (28%), KRAS (22%), and MET (16%) are the most commonly mutated oncogenes, while the top mutated tumor suppressor genes are TP53 (69%) and RB1 (25%). The majority of EGFR mutations are rare mutations, some of which have not been reported before. Moreover, 4 out of 6 MET alterations are exon 14 skipping, far more frequent than in NSCLC. Interestingly, ARID1A was found to be co-mutated with TP53 at all times. The tumor mutation burden (TMB) is ranging from 3.3 to 52.2 per megabase (MB) with a median of 11.7 per MB and 13 patients have more than 20 mutations per MB. Patients mutated in BRCA2, KMT2B, SMARCA4 or TSC2 have significantly higher TMB compared to patients with wide-type genes.

Conclusion

Our study characterizes the genetic background of Chinese PSC patients and demonstrates the importance of involving EGFR rare mutations and MET exon 14 skipping targeted therapies into clinical trials for treating PSC patients. High TMB are seen in about 40.6% Chinese patients with PSC, which could benefit from immune checkpoint inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yendamuri S, Caty L, Pine M et al (2012) Outcomes of sarcomatoid carcinoma of the lung: a surveillance, epidemiology, and end results database analysis. Surgery 152(3):397–402

    Article  PubMed  Google Scholar 

  2. Ettinger DS, Wood DE, Akerley W et al (2015) Non-small cell lung cancer, version 6.2015. J Natl Compr Cancer Netw 13(5):515–524

    Article  Google Scholar 

  3. Travis WD (2010) Sarcomatoid neoplasms of the lung and pleura. Arch Pathol Lab Med 134(11):1645–1658

    PubMed  Google Scholar 

  4. Vieira T, Girard N, Ung M et al (2013) Efficacy of first-line chemotherapy in patients with advanced lung sarcomatoid carcinoma. J Thorac Oncol 8(12):1574–1577

    Article  CAS  PubMed  Google Scholar 

  5. Chang YL, Wu CT, Shih JY et al (2011) EGFR and p53 status of pulmonary pleomorphic carcinoma: implications for EGFR tyrosine kinase inhibitors therapy of an aggressive lung malignancy. Ann Surg Oncol 18(10):2952–2960

    Article  PubMed  Google Scholar 

  6. Terra SB, Jang JS, Bi L et al (2016) Molecular characterization of pulmonary sarcomatoid carcinoma: analysis of 33 cases. Mod Pathol 29(8):824–831

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Jia Y, Stoopler MB et al (2016) Next-generation sequencing of pulmonary sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations. J Clin Oncol 34(8):794–802

    Article  CAS  PubMed  Google Scholar 

  8. Kaira K, Horie Y, Ayabe E et al (2010) Pulmonary pleomorphic carcinoma: a clinicopathological study including EGFR mutation analysis. J Thorac Oncol 5(4):460–465

    Article  PubMed  Google Scholar 

  9. Ahn MJ, Park BB, Ahn JS et al (2008) Are there any ethnic differences in molecular predictors of erlotinib efficacy in advanced non-small cell lung cancer? Clin Cancer Res 14(12):3860–3866

    Article  CAS  PubMed  Google Scholar 

  10. Schrock AB, Li SD, Frampton GM et al (2017) Pulmonary sarcomatoid carcinomas commonly harbor either potentially targetable genomic alterations or high tumor mutational burden as observed by comprehensive genomic profiling. J Thorac Oncol 12:932–942

    Article  PubMed  Google Scholar 

  11. Sharma SV, Bell DW, Settleman J et al (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7(3):169–181

    Article  CAS  PubMed  Google Scholar 

  12. Wang S, Wang Z (2014) EGFR mutations in patients with non-small cell lung cancer from mainland China and their relationships with clinicopathological features: a meta-analysis. Int J Clin Exp Med 7(8):1967–1978

    PubMed  PubMed Central  Google Scholar 

  13. Klughammer B, Brugger W, Cappuzzo F et al (2016) Examining treatment outcomes with erlotinib in patients with advanced non-small cell lung cancer whose tumors harbor uncommon EGFR mutations. J Thorac Oncol 11(4):545–555

    Article  PubMed  Google Scholar 

  14. Cho J, Bass AJ, Lawrence MS et al (2014) Colon cancer-derived oncogenic EGFR G724S mutant identified by whole genome sequence analysis is dependent on asymmetric dimerization and sensitive to cetuximab. Mol Cancer 13:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kancha RK, Peschel C, Duyster J (2011) The epidermal growth factor receptor-L861Q mutation increases kinase activity without leading to enhanced sensitivity toward epidermal growth factor receptor kinase inhibitors. J Thorac Oncol 6(2):387–392

    Article  PubMed  Google Scholar 

  16. Awad MM, Oxnard GR, Jackman DM et al (2016) MET Exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression. J Clin Oncol 34(7):721–730

    Article  CAS  PubMed  Google Scholar 

  17. Allo G, Bernardini MQ, Wu RC et al (2014) ARID1A loss correlates with mismatch repair deficiency and intact p53 expression in high-grade endometrial carcinomas. Mod Pathol 27(2):255–261

    Article  CAS  PubMed  Google Scholar 

  18. Guan B, Wang TL, Shih MI (2011) ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Can Res 71(21):6718–6727

    Article  CAS  Google Scholar 

  19. Fadare O, Gwin K, Desouki MM et al (2013) The clinicopathologic significance of p53 and BAF-250a (ARID1A) expression in clear cell carcinoma of the endometrium. Mod Pathol 26(8):1101–1110

    Article  CAS  PubMed  Google Scholar 

  20. Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chan TA, Wolchok JD, Snyder A (2015) Genetic basis for clinical response to CTLA-4 blockade in Melanoma. N Engl J Med 373(20):1984

    Article  CAS  PubMed  Google Scholar 

  22. Rosenberg JE, Hoffman-Censits J, Powles T et al (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387(10031):1909–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lawrence MS, Stojanov P, Polak P et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chalmers ZR, Connelly CF, Fabrizio D et al (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome medicine 9(1):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Budczies J, Bockmayr M, Denkert C et al (2015) Classical pathology and mutational load of breast cancer—integration of two worlds. J Pathol Clin Res 1(4):225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Soo RA, Lim SM, Syn NL et al (2018) Immune checkpoint inhibitors in epidermal growth factor receptor mutant non-small cell lung cancer: current controversies and future directions. Lung Cancer 115:12–20

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research was funded by grant from the International Science and Technology Cooperation Project of Changzhou Science and Technology bureau (number CZ20140016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 226 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Li, Q., Xu, B. et al. Mutation landscape and tumor mutation burden analysis of Chinese patients with pulmonary sarcomatoid carcinomas. Int J Clin Oncol 24, 1061–1068 (2019). https://doi.org/10.1007/s10147-019-01454-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-019-01454-6

Keywords

Navigation