Skip to main content
Log in

Patient-Specific Monitoring and Trend Analysis of Model-Based Markers of Fluid Responsiveness in Sepsis: A Proof-of-Concept Animal Study

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Total stressed blood volume (\(SBV_{\text{T}}\)) and arterial elastance (\(E_{\text{a}}\)) are two potentially important, clinically applicable metrics for guiding treatment in patients with altered hemodynamic states. Defined as the total pressure generating blood in the circulation, \(SBV_{\text{T}}\) is a potential direct measurement of tissue perfusion, a critical component in treatment of sepsis. \(E_{\text{a}}\) is closely related to arterial tone thus provides insight into cardiac efficiency. However, it is not clinically feasible or ethical to measure \(SBV_{\text{T}}\) in patients, so a three chambered cardiovascular system model using measured left ventricle pressure and volume, aortic pressure and central venous pressure is implemented to identify \(SBV_{\text{T}}\) and \(E_{\text{a}}\) from clinical data. \(SBV_{\text{T}}\) and \(E_{\text{a}}\) are identified from clinical data from six (6) pigs, who have undergone clinical procedures aimed at simulating septic shock and subsequent treatment, to identify clinically relevant changes. A novel, validated trend analysis method is used to adjudge clinically significant changes in state in the real-time \(E_{\text{a}}\) and \(SBV_{\text{T}}\) traces. Results matched hypothesised increases in \(SBV_{\text{T}}\) during fluid therapy, with a mean change of + 21% during initial therapy, and hypothesised decreases during endotoxin induced sepsis, with a mean change of − 29%. \(E_{\text{a}}\) displayed the hypothesised reciprocal behaviour with a mean changes of − 12 and + 30% during initial therapy and endotoxin induced sepsis, respectively. The overall results validate the efficacy of \(SBV_{\text{T}}\) in tracking changes in hemodynamic state in septic shock and fluid therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Figures reproduced from Ref. [8], with permission.

Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bagshaw, S. M., P. D. Brophy, D. Cruz, and C. Ronco. Fluid balance as a biomarker: impact of fluid overload on outcome in critically ill patients with acute kidney injury. Crit. care 12(4):169, 2008. https://doi.org/10.1186/cc6948.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Byrne, L., and F. Haren. Fluid resuscitation in human sepsis: time to rewrite history? Ann. Intensive Care 7(1):4, 2017. https://doi.org/10.1186/s13613-016-0231-8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cavallaro, F., C. Sandroni, and M. Antonelli. Functional hemodynamic monitoring and dynamic indices of fluid responsiveness. Miner. Anestesiol. 74(4):123–135, 2008.

    CAS  Google Scholar 

  4. Cecconi, M., D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European society of intensive care medicine. Intensive Care Med. 40(12):1795–1815, 2014. https://doi.org/10.1007/s00134-014-3525-z.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chase, J. G., A. J. Le Compte, J.-C. Preiser, G. M. Shaw, S. Penning, and T. Desaive. Physiological modeling, tight glycemic control, and the icu clinician: what are models and how can they affect practice? Ann. Intensive Care 1(1):11, 2011. https://doi.org/10.1186/2110-5820-1-11.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Davidson, S., C. Pretty, A. Pironet, T. Desaive, N. Janssen, B. Lambermont, P. Morimont, and J. G. Chase. Minimally invasive estimation of ventricular dead space volume through use of frank-starling curves. PLoS ONE 12(4):e0176302, 2017. https://doi.org/10.1371/journal.pone.0176302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davidson, S., C. Pretty, A. Pironet, S. Kamoi, J. Balmer, T. Desaive, and J. G. Chase. Minimally invasive, patient specific, beat-by-beat estimation of left ventricular time varying elastance. BioMed. Eng. Online 16 (1):42, 2017. ISSN 1475-925X. https://doi.org/10.1186/s12938-017-0338-7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Davidson, S. M., D. O. Kannangara, C. G. Pretty, S. Kamoi, T. Desaive, and J. G. Chase. A novel approach for deriving a patient specific beat-to-beat estimate of the cardiac driver function. IFAC Pap. Online 48(20):348–353, 2015. https://doi.org/10.1016/j.ifacol.2015.10.164.

    Article  Google Scholar 

  9. Davidson, A. M., C. Pretty, S. Kamoi, J. Balmer, T. Desaive, and J. G. Chase. Real-time, minimally invasive, beat-to-beat estimation of end-systolic volume using a modified end-systolic pressure–volume relation. IFAC Pap. Online 50(1):5456–5461, 2017. https://doi.org/10.1016/j.ifacol.2017.08.1082.

    Article  Google Scholar 

  10. Dellinger, R. P., M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 39(2):165–228, 2013. https://doi.org/10.1007/S00134-012-2769-8.

    Article  CAS  PubMed  Google Scholar 

  11. Dickson, J. L., C. A. Gunn, and J. G. Chase. Humans are horribly variable. Int. J. Clin. Med. Imaging 1(2):1–1000142, 2014.

    Google Scholar 

  12. Dickson, J. L., C. A. Gunn, and J. G. Chase. Clinical & medical imaging. Int. J. 1(2):1000142, 2014.

    Google Scholar 

  13. Drosatos, K., A. Lymperopoulos, P. J. Kennel, N. Pollak, P. C. Schulze, and I. J. Goldberg. Pathophysiology of sepsis-related cardiac dysfunction: driven by inflammation, energy mismanagement, or both? Curr. Heart Fail. Rep. 12(2):130–140, 2015. https://doi.org/10.1007/s11897-014-0247-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guarracino, F., R. Baldassarri, and M. R. Pinsky. Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit. Care 17(2):213, 2013. https://doi.org/10.1186/cc12522.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hariyanto, H., C. Q. Yahya, M. Widiastuti, P. Wibowo, and O. E. Tampubolon. Fluids and sepsis: changing the paradigm of fluid therapy: a case report. J Med. Case Rep. 11(1):30, 2017. https://doi.org/10.1186/s13256-016-1191-1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Howell, M. D., and A. M. Davis. Management of sepsis and septic shock. Jama, 317(8):847–848, 2017. https://doi.org/10.1001/jama.2017.0131.

    Article  PubMed  Google Scholar 

  17. Kamoi, S., C. Pretty, J. Balmer, S. Davidson, A. Pironet, T. Desaive, G. M. Shaw, and J. G. Chase. Improved pressure contour analysis for estimating cardiac stroke volume using pulse wave velocity measurement. Biomed. Eng. Online 16(1):51, 2017. https://doi.org/10.1186/s12938-017-0341-z.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kelm, D. J., J. T. Perrin, R. Cartin-Ceba, O. Gajic, L. Schenck, and C. C. Kennedy. Fluid overload in patients with severe sepsis and septic shock treated with early-goal directed therapy is associated with increased acute need for fluid-related medical interventions and hospital death. Shock 43(1):68, 2015. https://doi.org/10.1001/jama.2016.0288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumar, A., J. E. Parrillo, and A. Kumar, et al. Clinical review: myocardial depression in sepsis and septic shock. Crit. Care 6(6):500, 2002. https://doi.org/10.1186/cc1822.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Maas, J. J., M. R. Pinsky, L. P. Aarts, and J. R. Jansen. Bedside assessment of total systemic vascular compliance, stressed volume, and cardiac function curves in intensive care unit patients. Anesth. Analg. 115(4):880–887, 2012. https://doi.org/10.1213/ANE.0b013e31825fb01d.

    Article  PubMed  Google Scholar 

  21. Magder, S., and B. De Varennes. Clinical death and the measurement of stressed vascular volume. Crit. Care Med. 26(6):1061–1064, 1998.

    Article  CAS  Google Scholar 

  22. Malbrain, M. L. N. G., N. Van Regenmortel, B. Saugel, B. De Tavernier, P.-J. Van Gaal, O. Joannes-Boyau, J.-L. Teboul, T. W. Rice, M. Mythen, and X. Monnet. Principles of fluid management and stewardship in septic shock: it is time to consider the four d’s and the four phases of fluid therapy. Ann. Intensive Care 8(1):66, 2018. https://doi.org/10.1186/s13613-018-0402-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marik, P., and R. Bellomo. A rational approach to fluid therapy in sepsis. Br. J. Anaesth. 116(3):339–349, 2015. https://doi.org/10.1093/bja/aev349.

    Article  CAS  PubMed  Google Scholar 

  24. Merx, M. W., and C. Weber. Sepsis and the heart. Circulation 116(7):793–802, 2007. https://doi.org/10.1161/circulationaha.106.678359.

    Article  CAS  PubMed  Google Scholar 

  25. Monnet, X., P. E. Marik, and J.-L. Teboul. Prediction of fluid responsiveness: an update. Ann. Intensive Care 6(1):111, 2016. https://doi.org/10.1186/s13613-016-0216-7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mouncey, P. R., T. M. Osborn, G. S. Power, D. A. Harrison, M. Z. Sadique, R. D. Grieve, R. Jahan, S. E. Harvey, D. Bell, J. F. Bion, et al. Trial of early, goal-directed resuscitation for septic shock. N. Engl. J. Med. 372(14):1301–1311, 2015. https://doi.org/10.1056/NEJMoa1500896.

    Article  CAS  PubMed  Google Scholar 

  27. Pironet, A., P. C. Dauby, J. G. Chase, S. Kamoi, N. Janssen, P. Morimont, B. Lambermont, and T. Desaive. Model-based stressed blood volume is an index of fluid responsiveness. IFAC Pap. Online 48(20):291–296, 2015. https://doi.org/10.1016/j.ifacol.2015.10.154.

    Article  Google Scholar 

  28. Pironet, A., P. C. Dauby, S. Paeme, S. Kosta, J. G. Chase, and T. Desaive. Simulation of left atrial function using a multi-scale model of the cardiovascular system. PLoS ONE 8(6):e65146, 2013. https://doi.org/10.1371/journal.pone.0065146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pironet, A., T. Desaive, J. G. Chase, P. Morimont, and P. C. Dauby. Model-based computation of total stressed blood volume from a preload reduction manoeuvre. Math. Biosci. 265:28–39, 2015. ISSN 0025-5564. https://doi.org/10.1016/j.mbs.2015.03.015.

    Article  Google Scholar 

  30. Pironet, A., T. Desaive, P. C. Dauby, J. G. Chase, and P. D. Docherty. Parameter identification methods in a model of the cardiovascular system. IFAC Pap. Online 48(20):366–371, 2015. https://doi.org/10.1016/j.ifacol.2015.10.167.

    Article  Google Scholar 

  31. Rothe, C. F. Mean circulatory filling pressure: its meaning and measurement. J. Appl. Physiol. 74(2):499–509, 1993. https://doi.org/10.1152/jappl.1993.74.2.499.

    Article  CAS  Google Scholar 

  32. Seymour, C. W., V. X. Liu, T. J. Iwashyna, F. M. Brunkhorst, T. D. Rea, A. Scherag, G. Rubenfeld, J. M. Kahn, M. Shankar-Hari, M. Singer, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (sepsis-3). Jama 315(8):762–774, 2016. https://doi.org/10.1001/jama.2016.0288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Silva, J. M., A. M. R. R. de Oliveira, F. A. M. Nogueira, P. M. M. Vianna, M. C. P. Filho, L. F. Dias, V. P. L. Maia, C. de Souza Neucamp, C. P. Amendola, M. J. C. Carmona, et al. The effect of excess fluid balance on the mortality rate of surgical patients: a multicenter prospective study. Crit. Care 17(6):R288, 2013. https://doi.org/10.1186/cc13151.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Smith, B. W., J. G. Chase, R. I. Nokes, G. M. Shaw, and T. David. Velocity profile method for time varying resistance in minimal cardiovascular system models. Phys. Med. Biol. 48(20):3375, 2003. https://doi.org/10.1088/0031-9155/48/20/008/meta.

    Article  PubMed  Google Scholar 

  35. Starfinger, C., C. E. Hann, J. G. Chase, T. Desaive, A. Ghuysen, and G. M. Shaw. Model-based cardiac diagnosis of pulmonary embolism. Comput. Methods Programs Biomed. 87(1):46–60, 2007. https://doi.org/10.1016/j.cmpb.2007.03.010.

    Article  CAS  PubMed  Google Scholar 

  36. Stevenson, D., J. Revie, J. G. Chase, C. E. Hann, G. M. Shaw, B. Lambermont, A. Ghuysen, P. Kolh, and T. Desaive. Algorithmic processing of pressure waveforms to facilitate estimation of cardiac elastance. Biomed. Eng. Online 11(1):28, 2012. https://doi.org/10.1186/1475-925X-11-28.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stevenson, D., J. Revie, J. G. Chase, C. E. Hann, G. M. Shaw, B. Lambermont, A. Ghuysen, P. Kolh, and T. Desaive. Beat-to-beat estimation of the continuous left and right cardiac elastance from metrics commonly available in clinical settings. Biomed. Eng. Online 11(1):73, 2012. https://doi.org/10.1186/1475-925X-11-73.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Suga, H., K. Sagawa, and A. A. Shoukas. Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32(3):314–322, 1973.

    Article  CAS  Google Scholar 

  39. Vincent, J.-L., and M. R. Pinsky. We should avoid the term “fluid overload”, 2018.

  40. Zhou, T., J. Knopp, C. J. D. McKinlay, G. D. Gamble, J. E. Harding, J. G. Chase, CHYLD Study Group, et al. Glycaemic state analysis from continuous glucose monitoring measurements in infants. IFAC Pap. Online 51(27):276–281, 2018. https://doi.org/10.1016/j.ifacol.2018.11.629.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam Murphy.

Additional information

Associate Editor Ka-Wai Kwok oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, L., Davidson, S., Chase, J.G. et al. Patient-Specific Monitoring and Trend Analysis of Model-Based Markers of Fluid Responsiveness in Sepsis: A Proof-of-Concept Animal Study. Ann Biomed Eng 48, 682–694 (2020). https://doi.org/10.1007/s10439-019-02389-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02389-9

Keywords

Navigation