Skip to main content
Log in

Prey to predator body size ratio in the evolution of cooperative hunting—a social spider test case

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

One of the benefits of cooperative hunting may be that predators can subdue larger prey. In spiders, cooperative, social species can capture prey many times larger than an individual predator. However, we propose that cooperative prey capture does not have to be associated with larger caught prey per se, but with an increase in the ratio of prey to predator body size. This can be achieved either by catching larger prey while keeping predator body size constant, or by evolving a smaller predator body size while maintaining capture of large prey. We show that within a genus of relatively large spiders, Stegodyphus, subsocial spiders representing the ancestral state of social species are capable of catching the largest prey available in the environment. Hence, within this genus, the evolution of cooperation would not provide access to otherwise inaccessible, large prey. Instead, we show that social Stegodyphus spiders are smaller than their subsocial counterparts, while catching similar sized prey, leading to the predicted increase in prey-predator size ratio with sociality. We further show that in a genus of small spiders, Anelosimus, the level of sociality is associated with an increased size of prey caught while predator size is unaffected by sociality, leading to a similar, predicted increase in prey-predator size ratio. In summary, we find support for our proposed ‘prey to predator size ratio hypothesis’ and discuss how relaxed selection on large body size in the evolution of social, cooperative living may provide adaptive benefits for ancestrally relatively large predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

We would like to thank Y. Lubin, C. Tuni, M. Majer, I. Musli, I. Hoffman, L. L. Chobolo and G. M. Dintwe for help collecting field data. We thank the Schoeman family in Namibia, the Agastya International Foundation and R. Balakrishnan in India, and Y. Lubin in Israel for additional help and hosting. We also thank I. Agnarsson and J. Bechsgaard for providing us with phylogenies.

Funding

L.G. was supported by The Leverhulme Trust (Early Career Fellowship: ECF-2016-080). C.H. was supported by the European Research Council (ERC StG-2011-282163 awarded to T.B.). Field work was carried out with financing from Drylands Research SSA grant awarded to C.H. (EC contract number: 026064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trine Bilde.

Additional information

Communicated by Matthias Pechmann

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Special Issue "Crossroads in Spider Research - evolutionary, ecological and economic significance"

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinsted, L., Schou, M.F., Settepani, V. et al. Prey to predator body size ratio in the evolution of cooperative hunting—a social spider test case. Dev Genes Evol 230, 173–184 (2020). https://doi.org/10.1007/s00427-019-00640-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-019-00640-w

Keywords

Navigation