Skip to main content
Log in

Wrinkling number and force of a particle raft in compression

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A particle raft is formed by a layer of small particles floating on a water surface, which has a higher load bearing capacity than pure water. In the present work, we have made a comprehensive study on the wrinkling number and force of the particle raft in planar compression. The wrinkling number during the whole loading process is measured, accompanied with snapshots on the morphologies of the particle raft. The force-displacement curve is given based on the loading system, which has been validated by the numerical simulation. Moreover, the experiment and theoretical results both show that the equivalent Young’s modulus is dependent upon the loading displacement. Finally, the maximum wrinkling number of the raft has been analyzed by the scaling law, which agrees well with the experimental result. These findings have deepen our understandings on the mechanical properties of soft materials, which also hold implications on drug delivery, chemical engineering, micro-fluidics, environment protection, petroleum exploitation, mineral flotation, etc.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Aussillous, D. Quere, Nature 411, 924 (2001)

    Article  ADS  Google Scholar 

  2. F. Sarvi, K. Jain, T. Arbatan et al., Adv. Healthc. Mater. 4, 77 (2015)

    Article  Google Scholar 

  3. T. Arbatan, L. Li, J. Tian, W. Shen, Adv. Healthc. Mater. 1, 80 (2012)

    Article  Google Scholar 

  4. S. Fujii, M. Suzaki, S.P. Armes et al., Langmuir 27, 8067 (2011)

    Article  Google Scholar 

  5. J. Tian, T. Arbatan, X. Li et al., Chem. Commun. 46, 4734 (2010)

    Article  Google Scholar 

  6. H. Zeng, Y. Zhao, Appl. Phys. Lett. 96, 114104 (2010)

    Article  ADS  Google Scholar 

  7. Z. Dai, D. Fornasiero, J. Ralston, J. Colloid Interface Sci. 217, 70 (1999)

    Article  ADS  Google Scholar 

  8. R. Crawford, J. Ralston, Int. J. Miner. Process. 23, 1 (1988)

    Article  Google Scholar 

  9. E. Bormashenko, G. Whyman, O. Gendelman, Adv. Condens. Matter Phys. 6891, 206578 (2015)

    Google Scholar 

  10. G. Whyman, E. Bormashenko, J. Colloid Interface Sci. 457, 148 (2015)

    Article  ADS  Google Scholar 

  11. N. Pike, D. Richard, W. Foster et al., Proc. R. Soc. London Ser. B 269, 1211 (2002)

    Article  Google Scholar 

  12. E. Bormashenko, Curr. Opin. Colloid Inerface Sci. 16, 266 (2011)

    Article  Google Scholar 

  13. G. McHale, M.I. Newton, Soft Matter 7, 5473 (2011)

    Article  ADS  Google Scholar 

  14. G. McHale, M.I. Newton, Soft Matter 11, 2530 (2015)

    Article  ADS  Google Scholar 

  15. P. Aussillous, D. Quere, Proc. R. Soc. London Ser. A 462, 973 (2006)

    Article  ADS  Google Scholar 

  16. Y. Zhao, J. Fang, H. Wang et al., Adv. Mater. 22, 707 (2010)

    Article  Google Scholar 

  17. E. Bormashenko, R. Pogreb, R. Balter et al., Colloid Polym. Sci. 293, 2157 (2015)

    Article  Google Scholar 

  18. J. Jin, C. Ooi, D. Dao et al., Soft Matter 14, 4160 (2018)

    Article  ADS  Google Scholar 

  19. C. Planchette, A.L. Biance, O. Pitois et al., Phys. Fluids 25, 042104 (2013)

    Article  ADS  Google Scholar 

  20. C. Planchette, A.L. Biance, E. Lorenceau, EPL 97, 14003 (2012)

    Article  ADS  Google Scholar 

  21. D. Zang, Z. Chen, Y. Zhang et al., Soft Matter 9, 5067 (2013)

    Article  ADS  Google Scholar 

  22. Z. Chen, D. Zang, L. Zhao et al., Langmuir 33, 6232 (2017)

    Article  Google Scholar 

  23. S. Asare-Asher, J.N. Connor, R. Sedev, J. Colloid Interface Sci. 449, 341 (2015)

    Article  ADS  Google Scholar 

  24. Z. Liu, X. Fu, B.P. Binks et al., Langmuir 31, 11236 (2015)

    Article  Google Scholar 

  25. A. Rendos, N. Alsharif, B.L. Kim et al., Soft Matter 13, 8903 (2017)

    Article  ADS  Google Scholar 

  26. M. Dandan, H.Y. Erbil, Langmuir 25, 8362 (2009)

    Article  Google Scholar 

  27. J. Liu, P. Zuo, Eur. Phys. J. E 39, 17 (2016)

    Article  Google Scholar 

  28. X. Li, H. Shi, Y. Wang et al., Adv. Mater. Interfaces 5, 1701139 (2018)

    Article  Google Scholar 

  29. X. Li, Y. Wang, J. Huang et al., Appl. Phys. Lett. 111, 261604 (2017)

    Article  ADS  Google Scholar 

  30. X. Li, Y. Xue, P. Lv et al., Soft Matter 12, 1655 (2016)

    Article  ADS  Google Scholar 

  31. N.J. Mlot, C.A. Tovey, D.L. Hu, Proc. Natl. Acad. Sci. U.S.A. 108, 7669 (2011)

    Article  ADS  Google Scholar 

  32. P. Zuo, J. Liu, S. Li, Soft Matter 13, 2315 (2017)

    Article  ADS  Google Scholar 

  33. P. Petit, A.L. Biance, E. Lorenceau et al., Phys. Rev. E 93, 042802 (2016)

    Article  ADS  Google Scholar 

  34. C. Planchette, E. Lorenceau, A.L. Biance, Soft Matter 8, 2444 (2012)

    Article  ADS  Google Scholar 

  35. T.D. Kassuga, J.P. Rothstein, J. Colloid Interface Sci. 448, 287 (2015)

    Article  ADS  Google Scholar 

  36. D. Vella, P. Aussillous, L. Mahadevan, EPL 68, 212 (2004)

    Article  ADS  Google Scholar 

  37. R. Tadmor, R. Das, S. Gulec et al., Langmuir 33, 3594 (2017)

    Article  Google Scholar 

  38. P. Cicuta, D. Vella, Phys. Rev. Lett. 102, 138302 (2009)

    Article  ADS  Google Scholar 

  39. M. Pepicelli, T. Verwijlen, T.A. Tervoort et al., Soft Matter 35, 13 (2017)

    Google Scholar 

  40. B.H. Sun, Sci. China Phys. Mech. 61, 024721 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Liu.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, P., Ji, J., Tadmor, R. et al. Wrinkling number and force of a particle raft in compression. Eur. Phys. J. E 42, 147 (2019). https://doi.org/10.1140/epje/i2019-11913-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11913-9

Keywords

Navigation