Skip to main content
Log in

Reporter Scaffolds for Clinically Relevant Cell Transplantation Studies

  • Biomaterials - Engineering Cell Behavior
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

There are a number of cell therapies that are either in clinical trials or moving toward clinical trials, particularly for diseases of the retina. One of the challenges with cell therapies is tracking the status of cells over time. Genetic manipulation can facilitate this, but it can limit the clinical application of the cells. There are a host of fluorophores that have been developed to assess the status of cells, but these molecules tend to be cleared rapidly from cells. There are preclinical strategies that use degradable scaffolds, and we hypothesized that these scaffolds could be used to track the state of cells during preclinical studies. In this work, we explored whether fluorophores could be delivered from simple scaffolds fabricated under extremely harsh conditions, be active upon release, and report on the cells growing on the scaffolds over time. We encapsulated CellROX® Green Reagent, and pHrodo™ Red AM in poly(lactic-co-glycolic acid) (PLGA) scaffolds, showed that they could be delivered over weeks and were still active upon release and taken up by cells. These experiments provide the foundation for using scaffolds to deliver molecules to report on cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Aziz, M., W. L. Yang, and P. Wang. Measurement of phagocytic engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester. In: Current protocols in immunology Chapter 14:Unit 14.31, edited by Z. Chen. New York: Wiley, 2013.

    Google Scholar 

  2. Bharti, K. Patching the retina with stem cells. Nat. Biotechnol. 36:311–313, 2018.

    Article  CAS  Google Scholar 

  3. Bourges, J. L., S. E. Gautier, F. Delie, R. A. Bejjani, J. C. Jeanny, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest. Ophthalmol. Vis. Sci. 44:3562–3569, 2003.

    Article  Google Scholar 

  4. Bramley, T., P. Peeples, J. G. Walt, M. Juhasz, and J. E. Hansen. Impact of vision loss on costs and outcomes in medicare beneficiaries with glaucoma. Arch. Ophthalmol. 126:849–856, 2008.

    Article  Google Scholar 

  5. Carr, A. J., M. J. Smart, C. M. Ramsden, M. B. Powner, L. da Cruz, and P. J. Coffey. Development of human embryonic stem cell therapies for age-related macular degeneration. Trends Neurosci. 36:385–395, 2013.

    Article  CAS  Google Scholar 

  6. Chen, Z., and Y. A. Zhang. Cell therapy for macular degeneration–first phase I/II pluripotent stem cell-based clinical trial shows promise. Sci. China Life Sci. 58:119–120, 2015.

    Article  Google Scholar 

  7. da Cruz, L., K. Fynes, O. Georgiadis, J. Kerby, Y. H. Luo, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat. Biotechnol. 36:328–337, 2018.

    Article  Google Scholar 

  8. Dai, X., G. Hong, T. Gao, and C. M. Lieber. Mesh nanoelectronics: seamless integration of electronics with tissues. Acc. Chem. Res. 51:309–318, 2018.

    Article  CAS  Google Scholar 

  9. Groynom, R., E. Shoffstall, L. S. Wu, R. H. Kramer, and E. B. Lavik. Controlled release of photoswitch drugs by degradable polymer microspheres. J. Drug Target 23:710–715, 2015.

    Article  CAS  Google Scholar 

  10. Hafeli, U. O., J. S. Riffle, L. Harris-Shekhawat, A. Carmichael-Baranauskas, F. Mark, et al. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol. Pharm. 6:1417–1428, 2009.

    Article  CAS  Google Scholar 

  11. Hoekstra, M. E., F. E. Dijkgraaf, T. N. Schumacher, and J. C. Rohr. Assessing T lymphocyte function and differentiation by genetically encoded reporter systems. Trends Immunol. 36:392–400, 2015.

    Article  CAS  Google Scholar 

  12. Hu, X. B., Y. L. Liu, W. J. Wang, H. W. Zhang, Y. Qin, et al. Biomimetic graphene-based 3D scaffold for long-term cell culture and real-time electrochemical monitoring. Anal. Chem. 90:1136–1141, 2018.

    Article  CAS  Google Scholar 

  13. Kador, K. E., and J. L. Goldberg. Scaffolds and stem cells: delivery of cell transplants for retinal degenerations. Expert Rev. Ophthalmol. 7:459–470, 2012.

    Article  CAS  Google Scholar 

  14. Kador, K. E., R. B. Montero, P. Venugopalan, J. Hertz, A. N. Zindell, et al. Tissue engineering the retinal ganglion cell nerve fiber layer. Biomaterials 34:4242–4250, 2013.

    Article  CAS  Google Scholar 

  15. Kapellos, T. S., L. Taylor, H. Lee, S. A. Cowley, W. S. James, et al. A novel real time imaging platform to quantify macrophage phagocytosis. Biochem. Pharmacol. 116:107–119, 2016.

    Article  CAS  Google Scholar 

  16. Khoh-Reiter, S., S. A. Sokolowski, B. Jessen, M. Evans, D. Dalvie, and S. Lu. Contribution of membrane trafficking perturbation to retinal toxicity. Toxicol. Sci. 145:383–395, 2015.

    Article  CAS  Google Scholar 

  17. Kim, Y. M., S. J. Kim, R. Tatsunami, H. Yamamura, T. Fukai, and M. Ushio-Fukai. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Am. J. Physiol. Cell Physiol. 312:C749–C764, 2017.

    Article  Google Scholar 

  18. Lavik, E., M. H. Kuehn, A. J. Shoffstall, K. Atkins, A. V. Dumitrescu, and Y. H. Kwon. Sustained delivery of timolol maleate for over 90 days by subconjunctival injection. J. Ocul. Pharmacol. Ther. 32:642–649, 2016.

    Article  CAS  Google Scholar 

  19. Liu, Y., S. J. Chen, S. Y. Li, L. H. Qu, X. H. Meng, et al. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res. Ther. 8:209, 2017.

    Article  Google Scholar 

  20. Liu, Y., and W. Deng. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology. Brain Res. 1638:30–41, 2016.

    Article  CAS  Google Scholar 

  21. Madri, J., and S. Williams. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell Biol. 97:153–165, 1983.

    Article  CAS  Google Scholar 

  22. Mazumder, M. A., S. D. Fitzpatrick, B. Muirhead, and H. Sheardown. Cell-adhesive thermogelling PNIPAAm/hyaluronic acid cell delivery hydrogels for potential application as minimally invasive retinal therapeutics. J. Biomed. Mater. Res. A 100:1877–1887, 2012.

    Article  Google Scholar 

  23. Sharma, R., V. Khristov, A. Rising, B. S. Jha, R. Dejene, et al. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med 11:5580, 2019.

    Article  Google Scholar 

  24. Sturesson, C., and J. Carlfors. Incorporation of protein in PLG-microspheres with retention of bioactivity. J. Control Release 67:171–178, 2000.

    Article  CAS  Google Scholar 

  25. Tan, Y. S. E., P. J. Shi, C. J. Choo, A. Laude, and W. Y. Yeong. Tissue engineering of retina and Bruch’s membrane: a review of cells, materials and processes. Br. J. Ophthalmol. 102:1182–1187, 2018.

    Article  Google Scholar 

  26. Tang, Z., Y. Zhang, Y. Wang, D. Zhang, B. Shen, et al. Progress of stem/progenitor cell-based therapy for retinal degeneration. J. Transl. Med. 15:99, 2017.

    Article  Google Scholar 

  27. Tochitsky, I., J. Trautman, N. Gallerani, J. G. Malis, and R. H. Kramer. Restoring visual function to the blind retina with a potent, safe and long-lasting photoswitch. Sci. Rep. 7:45487, 2017.

    Article  CAS  Google Scholar 

  28. Treharne, A. J., M. C. Grossel, A. J. Lotery, and H. A. Thomson. The chemistry of retinal transplantation: the influence of polymer scaffold properties on retinal cell adhesion and control. Br. J. Ophthalmol. 95:768–773, 2011.

    Article  Google Scholar 

  29. Ueda, T., T. Tamura, and I. Hamachi. In situ construction of protein-based semisynthetic biosensors. ACS Sens. 3:527–539, 2018.

    Article  CAS  Google Scholar 

  30. Wang, Y., Q. S. Zang, Z. Liu, Q. Wu, D. Maass, et al. Regulation of VEGF-induced endothelial cell migration by mitochondrial reactive oxygen species. Am. J. Physiol. Cell Physiol. 301:C695–C704, 2011.

    Article  CAS  Google Scholar 

  31. Weber, D., B. Torger, K. Richter, M. Nessling, F. Momburg, et al. Interaction of poly(l-lysine)/polysaccharide complex nanoparticles with human vascular endothelial cells. Nanomaterials (Basel, Switzerland) 8:358, 2018.

    Article  Google Scholar 

  32. Wong, W. L., X. Su, X. Li, C. M. Cheung, R. Klein, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet 2:e106–e116, 2014.

    PubMed  Google Scholar 

  33. Worthington, K. S., L. A. Wiley, E. E. Kaalberg, M. M. Collins, R. F. Mullins, et al. Two-photon polymerization for production of human iPSC-derived retinal cell grafts. Acta Biomater. 55:385–395, 2017.

    Article  CAS  Google Scholar 

  34. Yokoyama, C., Y. Sueyoshi, M. Ema, Y. Mori, K. Takaishi, and H. Hisatomi. Induction of oxidative stress by anticancer drugs in the presence and absence of cells. Oncology letters 14:6066–6070, 2017.

    PubMed  PubMed Central  Google Scholar 

  35. Zarbin, M. Cell-based therapy for degenerative retinal disease. Trends Mol. Med. 22:115–134, 2016.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Steven J. Ryan Initiative for Macular Research and NIH Grant 1R56NS100732-01. Dr. Lavik is an inventor on intellectual property that includes the potential for incorporation of reporter molecules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin Lavik.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolger, M., Groynom, R., Bogie, K. et al. Reporter Scaffolds for Clinically Relevant Cell Transplantation Studies. Ann Biomed Eng 48, 1982–1990 (2020). https://doi.org/10.1007/s10439-019-02393-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02393-z

Keywords

Navigation