Skip to main content
Log in

Confocal Microscopy Confirmed that in Phosphatidylcholine Giant Unilamellar Vesicles with very High Cholesterol Content Pure Cholesterol Bilayer Domains Form

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The cholesterol (Chol) content in the fiber cell plasma membranes of the eye lens is extremely high, exceeding the solubility threshold in the lenses of old humans. This high Chol content forms pure Chol bilayer domains (CBDs) and Chol crystals in model membranes and membranes formed from the total lipid extracts from human lenses. CBDs have been detected using electron paramagnetic resonance (EPR) spin-labeling approaches. Here, we confirm the presence of CBDs in giant unilamellar vesicles prepared using the electroformation method from Chol/1-palmitoyl-2-oleoylphosphocholine and Chol/distearoylphosphatidylcholine mixtures. Confocal microscopy experiments using phospholipid (PL) analog (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine-5,5′-disulfonic acid) and cholesterol analog fluorescent probes (23-(dipyrrometheneboron difluoride)-24-norcholesterol) were performed, allowing us to make three major conclusions: (1) In all membranes with a Chol/PL mixing ratio (expressed as a molar ratio) >2, pure CBDs were formed within the bulk PL bilayer saturated with Chol. (2) CBDs were present as the pure Chol bilayer and not as separate patches of Chol monolayers in each leaflet of the PL bilayer. (3) CBDs, presented as single large domains, were always located at the top of giant unilamellar vesicles, independent of the change in sample orientation (right-side-up/upside-down). Results obtained with confocal microscopy and fluorescent Chol and PL analogs, combined with those obtained using EPR and spin-labeled Chol and PL analogs, contribute to the understanding of the organization of lipids in the fiber cell plasma membranes of the human eye lens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mainali, L., Raguz, M., O’Brien, W. J., & Subczynski, W. K. (2017). Changes in the properties and organization of human lens lipid membranes occurring with age. Current Eye Research, 42, 721–731.

    Article  CAS  PubMed  Google Scholar 

  2. Mainali, L., Raguz, M., O’Brien, W. J., & Subczynski, W. K. (2015). Properties of membranes derived from the total lipids extracted from clear and cataractous lenses of 61–70-year-old human donors. European Biophysics Journal, 44, 91–102.

    Article  CAS  PubMed  Google Scholar 

  3. Mainali, L., Raguz, M., O’Brien, W. J., & Subczynski, W. K. (2013). Properties of membranes derived from the total lipids extracted from the human lens cortex and nucleus. Biochimica et Biophysica Acta, 1828, 1432–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Borchman, D., Cenedella, R. J., & Lamba, O. P. (1996). Role of cholesterol in the structural order of lens membrane lipids. Experimental Eye Research, 62, 191–197.

    Article  CAS  PubMed  Google Scholar 

  5. Jacob, R. F., Cenedella, R. J., & Mason, R. P. (1999). Direct evidence for immiscible cholesterol domains in human ocular lens fiber cell plasma membranes. The Journal of Biological Chemistry, 274, 31613–31618.

    Article  CAS  PubMed  Google Scholar 

  6. Preston Mason, R., Tulenko, T. N., & Jacob, R. F. (2003). Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology. Biochimica et Biophysica Acta, 1610, 198–207.

    Article  CAS  PubMed  Google Scholar 

  7. Mainali, L., O’Brien, W. J., & Subczynski, W. K. (2019). Detection of cholesterol bilayer domains in intact biological membranes: methodology development and its application to studies of eye lens fiber cell plasma membranes. Experimental Eye Research, 178, 72–81.

    Article  CAS  PubMed  Google Scholar 

  8. Widomska, J., Subczynski, W. K., Mainali, L., & Raguz, M. (2017). Cholesterol bilayer domains in the eye lens health: a review. Cell Biochemistry and Biophysics, 75, 387–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Porter, F. D., & Herman, G. E. (2011). Malformation syndromes caused by disorders of cholesterol synthesis. Journal of Lipid Research, 52, 6–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kretzer, F. L., Hittner, H. M., & Mehta, R. (1981). Ocular manifestations of Conradi and Zellweger syndromes. Metabolic and Pediatric Ophthalmology, 5, 1–11.

    CAS  PubMed  Google Scholar 

  11. Cotlier, E., & Rice, P. (1971). Cataracts in the Smith-Lemli-Opitz syndrome. American Journal of Ophthalmology, 72, 955–959.

    Article  CAS  PubMed  Google Scholar 

  12. Simon, A., Kremer, H. P., Wevers, R. A., Scheffer, H., De Jong, J. G., & Van Der Meer, J. W. et al. (2004). Mevalonate kinase deficiency: evidence for a phenotypic continuum. Neurology, 62, 994–997.

    Article  CAS  PubMed  Google Scholar 

  13. Wilker, S. C., Dagnelie, G., & Goldberg, M. F. (2010). Retinitis pigmentosa and punctate cataracts in mevalonic aciduria. Retinal Cases & Brief Reports, 4, 34–36.

    Article  Google Scholar 

  14. Federico, A., & Dotti, M. T. (2003). Cerebrotendinous xanthomatosis: clinical manifestations, diagnostic criteria, pathogenesis, and therapy. Journal of Child Neurology, 18, 633–638.

    Article  PubMed  Google Scholar 

  15. Cruysberg, J. R., Wevers, R. A., & Tolboom, J. J. (1991). Juvenile cataract associated with chronic diarrhea in pediatric cerebrotendinous xanthomatosis. American Journal of Ophthalmology, 112, 606–607.

    Article  CAS  PubMed  Google Scholar 

  16. Traupe, H., Muller, D., Atherton, D., Kalter, D. C., Cremers, F. P., & van Oost, B. A. et al. (1992). Exclusion mapping of the X-linked dominant chondrodysplasia punctata/ichthyosis/cataract/short stature (Happle) syndrome: possible involvement of an unstable pre-mutation. Human Genetics, 89, 659–665.

    Article  CAS  PubMed  Google Scholar 

  17. Widomska, J, and Subczynski, WK (2019) Why Is very high cholesterol content beneficial for the eye lens but negative for other organs? Nutrients, 11(5), 1–18.

    Article  CAS  PubMed Central  Google Scholar 

  18. Subczynski, W. K., Mainali, L., Raguz, M., & O’Brien, W. J. (2017). Organization of lipids in fiber-cell plasma membranes of the eye lens. Experimental Eye Research, 156, 79–86.

    Article  CAS  PubMed  Google Scholar 

  19. Subczynski, W. K., Raguz, M., Widomska, J., Mainali, L., & Konovalov, A. (2012). Functions of cholesterol and the cholesterol bilayer domain specific to the fiber-cell plasma membrane of the eye lens. The Journal of Membrane Biology, 245, 51–68.

    Article  CAS  PubMed  Google Scholar 

  20. Mainali, L., Raguz, M., & Subczynski, W. K. (2013). Formation of cholesterol bilayer domains precedes formation of cholesterol crystals in cholesterol/dimyristoylphosphatidylcholine membranes: EPR and DSC studies. The Journal of Physical Chemistry B, 117, 8994–9003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raguz, M., Mainali, L., Widomska, J., & Subczynski, W. K. (2011). The immiscible cholesterol bilayer domain exists as an integral part of phospholipid bilayer membranes. Biochimica et Biophysica Acta, 1808, 1072–1080.

    Article  CAS  PubMed  Google Scholar 

  22. Raguz, M., Mainali, L., Widomska, J., & Subczynski, W. K. (2011). Using spin-label electron paramagnetic resonance (EPR) to discriminate and characterize the cholesterol bilayer domain. Chemistry and Physics of Lipids, 164, 819–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Raguz, M., Widomska, J., Dillon, J., Gaillard, E. R., & Subczynski, W. K. (2009). Physical properties of the lipid bilayer membrane made of cortical and nuclear bovine lens lipids: EPR spin-labeling studies. Biochimica et Biophysica Acta, 1788, 2380–2388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Plesnar, E., Subczynski, W. K., & Pasenkiewicz-Gierula, M. (2012). Saturation with cholesterol increases vertical order and smoothes the surface of the phosphatidylcholine bilayer: a molecular simulation study. Biochimica et Biophysica Acta, 1818, 520–529.

    Article  CAS  PubMed  Google Scholar 

  25. Plesnar, E., Subczynski, W. K., & Pasenkiewicz-Gierula, M. (2013). Comparative computer simulation study of cholesterol in hydrated unary and binary lipid bilayers and in an anhydrous crystal. The Journal of Physical Chemistry. B, 117, 8758–8769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jacob, R. F., Cenedella, R. J., & Mason, R. P. (2001). Evidence for distinct cholesterol domains in fiber cell membranes from cataractous human lenses. The Journal of Biological Chemistry, 276, 13573–13578.

    Article  CAS  PubMed  Google Scholar 

  27. Huang, J., Buboltz, J. T., & Feigenson, G. W. (1999). Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochimica et Biophysica Acta, 1417, 89–100.

    Article  CAS  PubMed  Google Scholar 

  28. Yappert, M. C., Rujoi, M., Borchman, D., Vorobyov, I., & Estrada, R. (2003). Glycero- versus sphingo-phospholipids: correlations with human and non-human mammalian lens growth. Experimental Eye Research, 76, 725–734.

    Article  CAS  PubMed  Google Scholar 

  29. Hughes, J. R., Deeley, J. M., Blanksby, S. J., Leisch, F., Ellis, S. R., & Truscott, R. J. et al. (2012). Instability of the cellular lipidome with age. Age, 34, 935–947.

    Article  CAS  PubMed  Google Scholar 

  30. Truscott, R. J. (2000). Age-related nuclear cataract: a lens transport problem. Ophthalmic Research, 32, 185–194.

    Article  CAS  PubMed  Google Scholar 

  31. Huang, L., Grami, V., Marrero, Y., Tang, D., Yappert, M. C., & Rasi, V. et al. (2005). Human lens phospholipid changes with age and cataract. Investigative Ophthalmology and Visual Science, 46, 1682–1689.

    Article  PubMed  Google Scholar 

  32. Paterson, C. A., Zeng, J., Husseini, Z., Borchman, D., Delamere, N. A., & Garland, D. et al. (1997). Calcium ATPase activity and membrane structure in clear and cataractous human lenses. Current Eye Research, 16, 333–338.

    Article  CAS  PubMed  Google Scholar 

  33. Lynnerup, N., Kjeldsen, H., Heegaard, S., Jacobsen, C., & Heinemeier, J. (2008). Radiocarbon dating of the human eye lens crystallines reveal proteins without carbon turnover throughout life. PLoS ONE, 3, e1529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Stewart, D. N., Lango, J., Nambiar, K. P., Falso, M. J., FitzGerald, P. G., & Rocke, D. M. et al. (2013). Carbon turnover in the water-soluble protein of the adult human lens. Molecular Vision, 19, 463–475.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Subczynski, W. K., Hyde, J. S., & Kusumi, A. (1989). Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proceedings of the National Academy of Science of the United States of America, 86, 4474–4478.

    Article  CAS  Google Scholar 

  36. Subczynski, W. K., Hopwood, L. E., & Hyde, J. S. (1992). Is the mammalian cell plasma membrane a barrier to oxygen transport? The Journal of General Physiology, 100, 69–87.

    Article  CAS  PubMed  Google Scholar 

  37. Kusumi, A., Subczynski, W. K., and Hyde, J. S. (1982). Oxygen transport parameter in membranes as deduced by saturation recovery measurements of spin-lattice relaxation times of spin labels. Proceedings of the National Academy of Science of the United States of America, 79, 1854–1858.

    Article  CAS  Google Scholar 

  38. Widomska, J., Raguz, M., & Subczynski, W. K. (2007). Oxygen permeability of the lipid bilayer membrane made of calf lens lipids. Biochimica et Biophysica Acta, 1768, 2635–2645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Plesnar, E., Szczelina, R., Subczynski, W. K., & Pasenkiewicz-Gierula, M. (2018). Is the cholesterol bilayer domain a barrier to oxygen transport into the eye lens? Biochimica et Biophysica Acta—Biomembranes, 1860, 434–441.

    Article  CAS  PubMed  Google Scholar 

  40. Subczynski, W. K., Wisniewska, A., Yin, J. J., Hyde, J. S., & Kusumi, A. (1994). Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry, 33, 7670–7681.

    Article  CAS  PubMed  Google Scholar 

  41. Mainali, L., Raguz, M., & Subczynski, W. K. (2012). Phases and domains in sphingomyelin-cholesterol membranes: structure and properties using EPR spin-labeling methods. European Biophysics Journal, 41, 147–159.

    Article  CAS  PubMed  Google Scholar 

  42. Widomska, J., Raguz, M., Dillon, J., Gaillard, E. R., & Subczynski, W. K. (2007). Physical properties of the lipid bilayer membrane made of calf lens lipids: EPR spin labeling studies. Biochimica et Biophysica Acta, 1768, 1454–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Deeley, J. M., Mitchell, T. W., Wei, X., Korth, J., Nealon, J. R., & Blanksby, S. J. et al. (2008). Human lens lipids differ markedly from those of commonly used experimental animals. Biochimica et Biophysica Acta, 1781, 288–298.

    Article  CAS  PubMed  Google Scholar 

  44. Mainali, L., Raguz, M., & Subczynski, W. K. (2011). Phase-separation and domain-formation in cholesterol-sphingomyelin mixture: pulse-EPR oxygen probing. Biophysical Journal, 101, 837–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heberle, F.A., & Feigenson, G.W. (2011). Phase separation in lipid membranes, Cold Spring Harbor Perspectives in Biology, 3(4), 1–13.

  46. Simons, K., & Vaz, W. L. (2004). Model systems, lipid rafts, and cell membranes. Annual Review of Biophysics and Biomolecular Structure, 33, 269–295.

    Article  CAS  PubMed  Google Scholar 

  47. Juhasz, J., Sharom, F. J., & Davis, J. H. (2009). Quantitative characterization of coexisting phases in DOPC/DPPC/cholesterol mixtures: comparing confocal fluorescence microscopy and deuterium nuclear magnetic resonance. Biochimica et Biophysica Acta, 1788, 2541–2552.

    Article  CAS  PubMed  Google Scholar 

  48. Scherfeld, D., Kahya, N., & Schwille, P. (2003). Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol. Biophysical Journal, 85, 3758–3768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao, J., Wu, J., Heberle, F. A., Mills, T. T., Klawitter, P., & Huang, G. et al. (2007). Phase studies of model biomembranes: complex behavior of DSPC/DOPC/cholesterol. Biochimica et Biophysica Acta, 1768, 2764–2776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bacia, K., Schwille, P., & Kurzchalia, T. (2005). Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. PNAS, 102, 3272–3277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fidorra, M., Duelund, L., Leidy, C., Simonsen, A. C., & Bagatolli, L. A. (2006). Absence of fluid-ordered/fluid-disordered phase coexistence in ceramide/POPC mixtures containing cholesterol. Biophysical Journal, 90, 4437–4451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Veatch, S. L. (2007). Electro-formation and fluorescence microscopy of giant vesicles with coexisting liquid phases. Methods in Molecular Biology, 398, 59–72.

    Article  CAS  PubMed  Google Scholar 

  53. Stevens, M. M., Honerkamp-Smith, A. R., & Keller, S. L. (2010). Solubility limits of cholesterol, lanosterol, ergosterol, stigmasterol, and beta-sitosterol in electroformed lipid vesicles. Soft Matter, 6, 5882–5890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mainali, L., Raguz, M., O’Brien, W. J., & Subczynski, W. K. (2012). Properties of fiber cell plasma membranes isolated from the cortex and nucleus of the porcine eye lens. Experimental Eye Research, 97, 117–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raguz, M., Mainali, L., O’Brien, W. J., & Subczynski, W. K. (2015). Lipid domains in intact fiber-cell plasma membranes isolated from cortical and nuclear regions of human eye lenses of donors from different age groups. Experimental Eye Research, 132, 78–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Raguz, M., Widomska, J., Dillon, J., Gaillard, E. R., & Subczynski, W. K. (2008). Characterization of lipid domains in reconstituted porcine lens membranes using EPR spin-labeling approaches. Biochimica et Biophysica Acta, 1778, 1079–1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Epand, R. M. (2003). Cholesterol in bilayers of sphingomyelin or dihydrosphingomyelin at concentrations found in ocular lens membranes. Biophysical Journal, 84, 3102–3110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Epand, R. M., Bach, D., Borochov, N., & Wachtel, E. (2000). Cholesterol crystalline polymorphism and the solubility of cholesterol in phosphatidylserine. Biophysical Journal, 78, 866–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants EY015526 and EY001931 from the National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marija Raguz or Witold K. Subczynski.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raguz, M., Kumar, S.N., Zareba, M. et al. Confocal Microscopy Confirmed that in Phosphatidylcholine Giant Unilamellar Vesicles with very High Cholesterol Content Pure Cholesterol Bilayer Domains Form. Cell Biochem Biophys 77, 309–317 (2019). https://doi.org/10.1007/s12013-019-00889-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-019-00889-y

Keywords

Navigation