Skip to main content
Log in

What is the Mechanism of Nitric Oxide Conversion into Nitrosonium Ions Ensuring S-Nitrosating Processes in Living Organisms

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Here, I present the data testifying that the conversion of free radical NO molecules to nitrosonium ions (NO+), which are necessary for the realization of one of NO biological effects (S-nitrosation), may occur in living organisms after binding NO molecules to loosely bound iron (Fe2+ ions) with the subsequent mutual one-electron oxidation–reduction of NO molecules (their disproportionation). Inclusion of thiol-containing substances as iron ligands into this process prevents hydrolysis of NO+ ions bound to iron thus providing the formation of stable dinitrosyl iron complexes (DNIC) with thiol ligands. Such complexes act in living organisms as donors of NO and NO+, providing stabilization and transfer of these agents via the autocrine and paracrine pathways. Without loosely bound iron (labile iron pool) and thiols participating in the DNIC formation, NO functioning as one of universal regulators of diverse metabolic processes would be impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 3
Scheme 5
Fig. 4
Fig. 5
Scheme 6
Fig. 6

Similar content being viewed by others

Abbreviations

B- and M-DNIC:

binuclear and mononuclear dinitrosyl iron complexes

RS-NO:

S-nitrosothiols

References

  1. Ignarro, L. J. (2000). Nitric oxide biology and pharmacology. Zurich, Switzerland: Academic Press.

    Google Scholar 

  2. Domingos, P., Prado, A. M., Wong, A., Gehring, C., & Feijo, J. A. (2015). Nitric oxide: a multitasked signaling gas in plants. Molecular Plant8, 506–520.

    Article  CAS  PubMed  Google Scholar 

  3. Stern, A. M., & Zhu, J. (2014). An introduction to nitric oxide sensing and response in bacteria. Advances in Applied Microbiology87, 187–220.

    Article  CAS  PubMed  Google Scholar 

  4. Hogg, N. (2000). Biological chemistry and clinical potential of S-nitrosothiols. Free Radical in Biology and Medicine, 28, 1478–1486.

    Article  CAS  Google Scholar 

  5. Gaston, B. M., Carver, J., Doctor, A., & Palmer, L. A. (2003). Physiological roles of S-nitrosylation. Molecular Intervenions, 3, 253–263.

    Article  CAS  Google Scholar 

  6. Wink, D. A., Nims, R. W., Darbyshir, J. F., Christodoulou, D., Hanbauer, I., Cox, G. W., Laval, F., Cook, J. J. A., Krishna, M., DeGraff, W. G., & Mitchel, J. B. (1994). Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reactions. Chemical Research in Toxicology, 7, 519–525. 133.

    Article  CAS  PubMed  Google Scholar 

  7. Kharitonov, V. G., Sandquist, A. R., & Sharma, V. S. (1995). Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. Journal of Biological Chemistry, 270, 28158–28164.

    Article  CAS  Google Scholar 

  8. Knowles, R. G., & Moncada, S. (1994). Nitric oxide synthases in mammals. Biochemistry Journal, 298, 249–258.

    Article  CAS  Google Scholar 

  9. Bryan, N. S., Rassaf, T., Maloney, R. E., Rodrigez, C. M., Saijo, F., Rodrigez, J. R., & Feelisch, M. (2004). Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proceedings of the National Academy of Sciences of the United States of America, 101, 4308–4313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seth, D., Hess, D. T., Hausladen, A., Wang, L. W., Wang, A. J., & Stamler, J. S. (2018). A multiplex enzymatic machinery for cellular protein S-nitrosylation. Molecular Cell, 89, 451–464.

    Article  CAS  Google Scholar 

  11. Bosworth, C. A., Toledo, J. C., Zmiewski, J. W., & Lancaster, J. R. (2009). Dinitrosyliron complex and the mechanism(s) of cellular protein nitrosothiol formation. Proceedings of the National Academy of Sciences of the United States of America, 106, 4671–4676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Foster, M. V., Liu, L., Zeng, M., Hess, D. T., & Stamler, J. S. (2009). A genetic analysis of nitrosative stress. Biochemistry, 48, 792–799.

    Article  CAS  PubMed  Google Scholar 

  13. Borodulin, R. R., Kubrina, L. N., Mikoyan, V. D., Poltorakov, A. P., Shvydkiy, V. O., Serezhenkov, V. A., Yakhontova, E. R., & Vanin, A. F. (2013). Dinitrosyl iron complexes with glutathione as NO and NO+ donors. Nitric Oxide: Biology and Chemistry, 29, 4–16.

    Article  CAS  Google Scholar 

  14. Vanin, A. F., Borodulin, R. R., & Mikoyan, V. D. (2017). Dinitrosyl iron complexes with natural thiol containing ligands in aqueous solutions: synthesis and some physico-chemical properties (A methodological review). Nitric Oxide: Biology and Chemistry, 66, 1–9.

    Article  CAS  Google Scholar 

  15. Lique, J., & Grosley, D. R. (1999). Transitions probabilities and electron transition moments of the A2+ − X2II and D2+X2II system of nitric oxide. The Journal of Chemical Physics, 111, 7405–7415.

    Article  Google Scholar 

  16. Melia, T. P. (1965). Decomposition of nitric oxide at elevated pressures. Journal of Inorganic and Nuclear Chemistry, 27, 95–98.

    Article  CAS  Google Scholar 

  17. Vanin, A. F. (2009). Dinitrosyl iron complexes with thiolate ligands: physico-chemistry, biochemistry and physiology. Nitric Oxide: Biology and Chemistry, 21, 1–13.

    Article  CAS  Google Scholar 

  18. Vanin, A. F., & Burbaev, D. Sh (2011). Electronic and spatial structures of water-soluble dinitrosyl iron complexes with thiol-containing ligands underlying their activiy to act as nitric oxide and nitrosonium ion donors. Biophysical Journal, 14, 878236.

    Google Scholar 

  19. Vanin, A. F., Poltorakov, A. P., Mikoyan, V. D., Kubrina, L. K., & Burbaev, D. S. (2011). Polynuclear water-soluble dinitrosyl iron complexes with cysteine or glutathione ligands: electron paramagnetic resonance and optical studies. Nitric Oxide: Biology and Chemistry, 23, 136–149.

    Article  CAS  Google Scholar 

  20. Vanin, A. F. (2016). Dinitrosyl iron complexes with thiol-containing ligands as a “working form” of endogenous nitric oxide. Nitric Oxide: Biology and Chemistry, 54, 15–29.

    Article  CAS  Google Scholar 

  21. Nalbandyan, R. M., Vanin, A. F., Blumenfeld, L. A. (1964). EPR signals of a new type in yeast cells. Abstracts of the Meeting “Free Radical Processes in Biological Systems”, Moscow (p. 18)

  22. Vanin, A. F., & Nalbandyan, R. M. (1965). Free radicals of a new type in yeast cells. Biofizika (Russia), 10, 167–168.

    CAS  Google Scholar 

  23. Vanin, A. F., Blumenfeld, L. A., & Chetverikov, A. G. (1967). Investigation of non-heme iron complexes in cells and tissues by the EPR method. Biofizika (Russia), 12, 829–841.

    CAS  Google Scholar 

  24. Vithaythil, A. J., Ternberg, B., & Commoner, B. (1965). Electron spin resonance signals of rat liver during chemical carcinogenesis. Nature, 207, 1246–1249.

    Article  Google Scholar 

  25. Roussin, F. Z. (1858). Annales de Chimie et de Physique52, 285–303.

  26. Vanin, A. F. (2018). Nitrosonium ions as constituents of dinitrosyl iron complexes with glutathione responsible for their S-nitrosating activivty. Austin Journal of Analytical and Pharmaceutical Chemistry, 5(4), 1109.

    Article  CAS  Google Scholar 

  27. Borodulin, R. R., Kubrina, L. N., Shvydkiy, V. O., Lakomkin, V. L., & Vanin, A. F. (2013). A simple protocol for the synthesis of dinitrosyl iron complexes with glutathione: EPR, optical, chromatographic and biological characterization of reaction products. Nitric Oxide: Biology and Chemistry, 35, 110–115.

    Article  CAS  Google Scholar 

  28. Vanin, A. F., Malenkova, I. V., & Serezhenkov, V. A. (1997). Iron catalyzes both decomposition and synthesis of S-nitrosothiols: optical and electron paramagnetic stufies. Nitric Oxide: Biology and Chemistry, 1, 191–203.

    Article  CAS  Google Scholar 

  29. Vanin, A. F., Papina, A. A., Serezhenkov, V. A., & Koppenol, W. H. (2004). The mechanism of S-nitrosothiol decomposition catalyzed by iron. Nitric Oxide: Biology and Chemistry, 10, 60–73.

    Article  CAS  Google Scholar 

  30. Chazov, E. I., Rodnenkov, O. V., Zorin, A. V., Lakomkin, V. L., Gramovich, V. V., Vyborov, O. V., Dragnev, A. G., Timodshin, A. A., Buryachkovskaya, L. I., Abramov, A. A., Massenko, V. P., Arzamastsev, E. V., Kapelko, V. I., & Vanin, A. F. (2012). Hypotensive effect of “Oxacom” containing a dinitrosyl iron complex with glutathione: animal studies and clinical trials on healthy volunteers. Nitric Oxide: Biology and Chemistry, 26, 148–157.

    Article  CAS  Google Scholar 

  31. Hickok, J. R., Sahni, S., Shen, H., Arvindt, A., Antoniou, C., Fung, L. M. W., & Thomas, D. D. (2011). Dinitrosyliron complexes are the most abundant nitric oxide-derived cellular adduct: biological parameters of assembly and disappearance? Free Radical Biology and Chemistry, 51, 1558–1566.

    Article  CAS  Google Scholar 

  32. Vanin, A. F., Mikoyan, V. D., Kubrina, L. N., Borodulin, R. R., & Burgova, E. N. (2015). Mono- and binuclear dinitrosyl iron complexes with thiol-containng ligands in various biosystems. Biophysics (Translation from Russian), 60, 603–612.

    CAS  Google Scholar 

  33. Mikoyan, V. D., Burgova, E. N., Borodulin, R. R., & Vanin, A. F. (2017). The binuclear form of dinitrosyl iron complexes with thiol-containing ligands in animal tissues. Nitric Oxide: Biology and Chemistry, 62, 1–10.

    Article  CAS  Google Scholar 

  34. Vanin, A. F. (2018). EPR characterization of dinitrosyl iron complexes as an approach to their indentification in biological objects: an overview. Cell Biochemistry and Biophysics, 76, 3–17.

    Article  CAS  PubMed  Google Scholar 

  35. Vanin, A. F., Huisman, A., & van Faassen, E. (2002). Iron dithiocarbamates as spin traps for nitric oxide: pitfalls and successes. Methods in Enzymology, 359, 27–42.

    Article  CAS  PubMed  Google Scholar 

  36. Vanin, A. F., Burgova, E. N., & Adamyan, L. V. (2015). Dinitrosyl iron complexes with glutathione suppress surgically induced experimental endometriosis in rats. Austin Journal of Reproductive Medicine Infertility, 2, 1019–1032.

    Article  Google Scholar 

  37. Burgova, E. N., Khristidis, Y. I., Kurkov, A. V., Mikoyan, V. D., Shekhter, A. B., Adamyan, L. V., Timashev, P. S., & Vanin, A. F. (2019). The inhibiting effect of dinitrosyl iron complexes with thiol-containing ligands on the growth of endometrioid tumours in rats with experimental endometriosis. Cell Biochemistry and Biophysics, 77, 69–77.

    Article  CAS  Google Scholar 

  38. Gizatullin, A. R., Akentieva, N. P., Sanina, N. A., Shmatko, N.Yu., Goryachev, N.S., Shkondina, N.I., Prichodenko, T.R., Zhelev, N., & Aldoshin, S.M. (2018). Effect of dinitrosyl iron complexes (NO donors) on the metabolic processes in human fibroblasts. Doklady Akademii Nauk (Translation from Russian), 483, 337–340.

    CAS  Google Scholar 

  39. Kleschyov, A. L., Mordvintcev, P. I., & Vanin, A. F. (1985). Role of nitric oxide and iron in hypotensive action of nitrosyl iron complexes with various anionic ligands. Studia Biophysica, 105, 93–102.

    Google Scholar 

  40. Mülsch, A., Mordvintcev, P., Vanin, A. F., & Busse, R. (1991). The potent vasodilating and guanylyl cyclase activating dinitrosyl-iron(II) complex is stored in a protein-bound form in vascular tissue and its release by thiols. FEBS Letters, 3, 232–256.

    Google Scholar 

  41. Mordvintcev, P. I., Putintcev, M. D., Galagan, M. E., Oranovskaya, E. V., Medvedev, O. S., & Vanin, A. F. (1988). Hypotensive activity of dinitrosyl iron complexes with proteins in narcotizes animals. Bulletin of the Kardiology Center SSSR, (1), 46–61.

  42. Galagan, M. E., Oranovskaya, E. V., Mordvintcev, P. I., Medvedev, O. S., & Vanin, A. F. (1988). Hypotensive effect of dinitrosyl iron complexes in conscious animals. Bulletin of the Kardiology Center SSSR, (2), 75–80.

  43. Vedernikov, Y. P., Mordvintcev, P. I., Malenkova, I. V., & Vanin, A. F. (1992). Similarity between the vasorelaxing activity of dinitrosyl iron cysteine complexes and endothelium-derived relaxing factor. European Journal of Pharmacology, 211, 313–317.

    Article  CAS  PubMed  Google Scholar 

  44. Vedernikov, Y. P., Mordvintcev, P. I., Malenkova, I. V., & Vanin, A. F. (1992). Effect of diethyldithiocarbamate on the activity of nitric oxide-releasing vasodilators. European Journal of Pharmacology, 212, 123–128.

    Article  Google Scholar 

  45. Flitney, F. M., Megson, I. L., Flitney, D. E., & Butler, A. R. (1992). Iron–sulfur nitrosyls: a novel class of nitric oxide generator: mechanisms of vasodilator action on rat isolated tail artery. British Journal of Pharmacology, 107, 842–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vanin, A. F., Mokh, V. P., Serezhenkov, V. A., & Chazov, E. I. (2007). Vasorelaxing activity of stable powder preparations of dinitrosyl iron complexes with cysteine or glutathione. Nitric Oxide: Biology and Chemistry, 16, 322–330.

    Article  CAS  Google Scholar 

  47. Lakomkin, V. L., Vanin, A. F., Timoshin, A. A., Kapelko, V. I., & Chazov, E. I. (2007). Long-lasting hypotensive action of dinitrosyl–iron complexes with thiol-containing ligands in conscious normotensive and hypertensive rats. Nitric Oxide: Biology and Chemistry, 16, 413–418.

    Article  CAS  Google Scholar 

  48. Gosteev, A. Y., Zorin, A. V., Rodnenkov, O. V., Dragnev, A. G., & Chazov, E. I. (2014). Hemodinamic effect of the synthetic analogue of endogenous nitric oxide (II) donors a dinitrosyl iron complex in hypertensive patients with uncomplicated hypertensive crisis. Therapeutic Archive (Russia), 86, 49–55.

    Google Scholar 

  49. Timoshin, A. A., Lakomkin, V. L., Abramov, A. A., Ruuge, E. K., Kapel’ko, V. I., Chazov, E. I., & Vanin, A. F. (2015). The hypotensive effect of the nitric monoxide donor Oxacom at different routs of ins administration to experimental animals. European Journal of Pharmacology, 765, 525–532.

    Article  CAS  Google Scholar 

  50. Liu, T., Zhang, M., Terry, M. H., Schroeder, H., Wilson, S. M., Power, G. G., Li, Q., Tiple, T. E., Barchardt, D., & Blood, A. B. (2018). Hemodinamic effects of glutathione-liganded binuclear dinitrosyl iron complex: evidence for nitroxyl generation and modulatiobn by plasma albumin. Molecular Pharmacology, 93, 427–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mordvintcev, P. I., Rudneva, V. G., Vanin, A. F., Shimkevich, L. L., & Khodorov, B. I. (1986). The inhibition effect of low-molecular dinitrosyl iron complexes on platelet aggregation. Biokhimiya (Russia), 51, 1851–1857.

    Google Scholar 

  52. Kuznetcov, V. A., Mordvintcev, P. I., Dank, E. K., Yurkiv, V. A., & Vanin, A. F. (1988). Low-molecular and protein-bound dinitrosyl iron complexes as inhibitors of platelet aggregation. Voprosy Meditsinskoi Khimii, 5, 43–46.

    Google Scholar 

  53. Lundbrook, S. B., Scrutton, M. C., Joannou, C. L., Cammack, R., & Hughes, M. N. (1995). Inhibition of platelet aggregation by Roussin’s black salt, sodium nitroprusside and other metal nitrosyl complexes. Platelets, 6, 209–212.

    Article  Google Scholar 

  54. Arkhipova, M. M., Mikoyan, V. D., & Vanin, A. F. (2008). Effect of exogenous donors of nitric oxide and inhibitors of its enzymatic synthesis on experimental ischemic thrombosis in conjunctive veins of the rabbit eyes. Biofizika (Russia), 53, 315–325.

    CAS  Google Scholar 

  55. Remizova, M. I., Kochetygov, N. I., Kerbut, K. A., Lakomkin, V. L., Timoshin, A. A., Burgova, E. N., & Vanin, A. F. (2011). Effect of dinitosyl iron complexes with glutathione on hemorrhagic shock followed by saline treatment. European Journal of Pharmacology, 662, 40–46.

    Article  CAS  PubMed  Google Scholar 

  56. Shamova, E. B., Bichan, O. D., Drozd, E. C., Gorudko, I. V., Chizhik, S. A., Shumaev, K. B., Cherenkevich, S. N., & Vanin, A. F. (2011). Regulation of functional and mechanical properties of platelets and red cells by NO donors. Biofizika (Russia), 56, 265–271.

    CAS  Google Scholar 

  57. Andreyev-Andriyevsky, A. A., Mikoyan, V. D., Serezhenkov, V. A., & Vanin, A. F. (2011). Penile erectile activity of dinitrosyl iron complexes with thiol-containing ligands. Nitric Oxide: Biology and Chemistry, 24, 217–223.

    Article  CAS  Google Scholar 

  58. Shekhter, A. B., Rudenko, T. G., Serezhenkov, V. A., & Vanin, A. F. (2007). Dinitrosyl iron complexes with cysteine or glutathione accelerate skin wound healing. Biofizika (Russia), 52, 534–538.

    Google Scholar 

  59. Shekhter, A. B., Rudenko, T. G., Istranov, L. P., Guller, A. E., Borodulin, R. R., & Vanin, A. F. (2015). Dinitrosyl iron complexes with glutathione incorporated into acollagen matrix as a base for the design of drugs accelerating skin wound healing. European Journal of Pharmaceutical Sciences, 78, 8–18.

    Article  CAS  PubMed  Google Scholar 

  60. Shumaev, K. B., Gubkin, A. A., Serezhenkov, V. A., Lobysheva, I. I., Kosmachevskaya, O. V., Ruuge, E. K., & Vanin, A. F. (2008). Interaction of reactive oxygen and nitrogen species with albumin and methemoglobin-bound dinitrosyl iron complexes. Nitric Oxide: Biology and Chemistry, 18, 37–46.

    Article  CAS  Google Scholar 

  61. Kapelko, V. I., Lakomkin, V. L., Abramov, A. A., Lukoshkova, E. V., Undrovinas, N. A., Khapchaev, A. Y., & Shirinsky, V. P. (2017). Protective effects of dinitrosyl iron complexes under oxidative stress in the heart. Oxidative Medicine and Cellular Longevity, 9456163. p. 10.

  62. Lepka, K., Volbracht, K., Bill, E., Schneider, R., Rios, N., Hildebrandt, T., Ingwesen, J., Prozorovski, T., Lillig, C. H., van Horssen, J., Steinman, L., Hartung, H.-P., Radi, R., Holmgren, A., Aktas, O., Berndt, C. (2017). Iron–sulfur glutaredoxin 2 protects oligodendrocytes against damage induced by nitric oxide release from activated microglia. Glia 1–14.

  63. Pisarenko, O., Studneva, I., Timoshin, A., & Veselova, O. (2019). Protective efficacy of dinitrosyl iron complexes with reduced glutsthione in cardioplegia and reperfusion. Pflügers Archiv—European Journal of Physiology, 471, 583–593.

    Article  CAS  PubMed  Google Scholar 

  64. Kim, Y. M., Chung, H. T., Symmons, R. L., & Billiar, T. R. (2000). Cellular nonheme iron content is a determinant of nitric oxide-mediated apoptosis, necrosis, and caspase inhibition. The Journal of Biological Chemistry, 275, 10954–10961.

    Article  CAS  PubMed  Google Scholar 

  65. Kleschyov, A. L., Strand, S., Schmitt, S., Gottfried, D., Skatchkov, M., Sjakste, N., Deiber, M., Umansky, V., & Münzel, T. (2006). Dinitrosyl–iron triggers apoptosis in Jurkat cells despite overexpression of Bcl-2. Free Radical Biology and Medicine, 40, 1340–1348.

    Article  CAS  PubMed  Google Scholar 

  66. Giliano, N. V., Konevega, L. V., Noskin, L. A., Serezhenkov, V. A., Poltorakov, A. P., & Vanin, A. F. (2011). Dinitrosyl iron complexes with thiol-containing ligands and apoptosis: studies with HeLa cell culture. Nitric Oxide: Biology and Chemistry, 24, 151–159.

    Article  CAS  Google Scholar 

  67. Vanin, A. F., Menshikov, G. B., Moroz, I. A., Mordvintcev, P. I., Serezhenkov, V. A., & Burbaev, D. S. (1192). The source of non-heme iron that binds nitric oxide in cultivated macrophages. Biochimica Biophysica Acta, 1135, 275–279.

    Article  Google Scholar 

  68. Voevodskaya, N. V., Serezhenkov, V. A., Cooper, C. F., Kubrina, L. N., & Vanin, A. F. (2002). Exogenous ferrous ions is required for the nitric oxide-catalyzed destruction of the iron–sulphur center in adrenodoxin. Biochemistry Journal, 368, 633–639.

    Article  CAS  Google Scholar 

  69. Ding, H., & Demple, B. (2000). Direct nitric signal transduction via nitrosylation of iron–sulfur centers in the SoxR transcription activation. Proceedings of the National Academy of Sciences of the United States of America, 97, 5146–5150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. D’Autreaux, B., Touati, D., Beresh, B., Latour, J.-M., & Michaud-Soret, I. (2002). Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of iron. Proceedings of the National Academy of Sciences of the United States of America, 99, 16619–16624.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lo, F. C., Chen, C. L., Lee, C. M., Tsai, M. C., Lu, T. T., Liaw, W. F., & Yu, S. S. F. (2008). A study of NO trafficking from dinitrosyl-iron complexes to the recombinant E. coli transcriptional factor SoxR. Journal of Biological Inorganic Chemistry, 13, 961–972.

    Article  CAS  PubMed  Google Scholar 

  72. Tucker, N. P., Hicks, M. G., Clarke, T. A., Crack, J. C., Chandra, G., Le Brun, N. E., Dixon, R., & Hutchings, M. I. (2008). The trancriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster. PLoS ONE, 11, e3623

    Article  CAS  Google Scholar 

  73. Fujikawa, M., Kobayashi, K., & Kozawa, T. (2014). Mechanistic studies on formation of the dinitrosyl iron complex of the [2Fe–2S] cluster of SoxR protein. The Journal of Biochemistry, 156, 163–172.

    Article  CAS  PubMed  Google Scholar 

  74. Crack, J. C., Svistunenko, D. A., Munnoch, J., Thomson, A. J., Hutchings, M. I., & Le Brun, N. E. (2016). Differentiated, promoter-specific response of [4F-4S] NsrR DNA binding to reaction with nitric oxide. The Journal of Biological Chemistry, 291, 8663–8672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Crack, J.C., Hutchings, M. I., Thomson, A. J., & Le Brun, N. E. (2016). Biochemical properties of paracoccus denitrificans FnrP: reactions with molecular oxygen and nitric oxide. Journal of Biological Inorganic Chemistry, 21, 71–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kudhair, B. K., Hounslow, A. M., Rolfe, M. D., Crack, J. C., Hunt, D. M., Bukston, R. S., Smith, L. J., LeBrun, N. E., Williamson, M. P., & Green, J. (2017). Structure of a WbI protein and implications for NO sensing by M. tuberculosis. Nature, 8, 2280–2290.

    Google Scholar 

  77. Vanin, A. F., Ostrovskaya, L. A., Korman, D. B., Mikoyan, V. D., Kubrina, L. N., Borodulin, R. R., Fomina, M. M., Bluchterova, N. V., & Rykova, V. A. (2015). An anti-nitrosative system as a factor of malignant tumor resistance to the cytotoxic effect of nitrogen monoxide. Biophysics (Translation from Russian), 60, 121–125.

    CAS  Google Scholar 

  78. Vanin, A. F., Ostrovskaya, L. A., Korman, D. B., Kubrina, L. N., Borodulin, R. R., Fomina, M. M., Bluchterova, N. V., Rykova, V. A., & Timoshin, A. A. (2015). The anti-tumor activity of the S-nitrosoglutathione and dinitrosyl iron complexes with glutathione: comparative studies. Biophysics (Translation from Russian), 60, 963–969.

    CAS  Google Scholar 

  79. Vanin, A. F., Ostrovskaya, L. A., Korman, D. B., Rykova, V. A., Bluchterova, N. V., & Fomina, M. M. (2017). The anti-tumor effect of dinitrosyl iron complexes with glutathione in murine solid-tumor model, Biophysics. Biophysics (Translation from Russian), 62, 479–484.

    CAS  Google Scholar 

  80. Wu, S.-C., Lu, C.-Y., Chen, Y.-L., Lo, F.-C., Wang, T.-Y., Chen, Y.-J., Yuan, S.-S., Liaw, W.-F., & Wang, Y.-M. (2016). Water-soluble dinitrosyl iron complexes (DNIC); a nitric oxide vehicle triggering cancer cell death via apoptosis. Inorganic Chemistry, 55, 9383–9392.

    Article  CAS  PubMed  Google Scholar 

  81. Badroff, C., Fichtscherer, B., Mülsch, A., Zeicher, A. M., & Dimeller, S. (2001). Selective delivery of nitric oxide to a cellular target: a pseudosubstrate-coupled dinitrosyl iron complex inhibits th endoviral protease 2.A. Nitric Oxide: Biology and Chemistry, 6, 305–312.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Russian Academic Excellent Project “5-100” and supported by the Russian Foundation for Fundamental Researches (Grant No. 18-04-00059a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly F. Vanin.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanin, A.F. What is the Mechanism of Nitric Oxide Conversion into Nitrosonium Ions Ensuring S-Nitrosating Processes in Living Organisms. Cell Biochem Biophys 77, 279–292 (2019). https://doi.org/10.1007/s12013-019-00886-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-019-00886-1

Keywords

Navigation