Skip to main content

Advertisement

Log in

Pre-Conditioning Stem Cells in a Biomimetic Environment for Enhanced Cardiac Tissue Repair: In Vitro and In Vivo Analysis

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Stem cell-based therapies represent a valid approach to restore cardiac function due to their beneficial effect in reducing scar area formation and promoting angiogenesis. However, their translation into the clinic is limited by the poor differentiation and inability to secrete sufficient therapeutic factors. To address this issue, several strategies such as genetic modification and biophysical pre-conditioning have been used to enhance the efficacy of stem cells for cardiac tissue repair.

Methods

In this study, a biomimetic approach was used to mimic the natural mechanical stimulation of the myocardium tissue. Specifically, human adipose-derived stem cells (hASCs) were cultured on a thin gelatin methacrylamide (GelMA) hydrogel disc and placed on top of a beating cardiomyocyte layer. qPCR studies and metatranscriptomic analysis of hASCs gene expression were investigated to confirm the correlation between mechanical stimuli and cardiomyogenic differentiation. In vivo intramyocardial delivery of pre-conditioned hASCs was carried out to evaluate their efficacy to restore cardiac function in mice hearts post-myocardial infarction.

Results

The cyclic strain generated by cardiomyocytes significantly upregulated the expression of both mechanotransduction and cardiomyogenic genes in hASCs as compared to the static control group. The inherent angiogenic secretion profile of hASCs was not hindered by the mechanical stimulation provided by the designed biomimetic system. Finally, in vivo analysis confirmed the regenerative potential of the pre-conditioned hASCs by displaying a significant improvement in cardiac function and enhanced angiogenesis in the peri-infarct region.

Conclusion

Overall, these findings indicate that cyclic strain provided by the designed biomimetic system is an essential stimulant for hASCs cardiomyogenic differentiation, and therefore can be a potential solution to improve stem-cell based efficacy for cardiovascular repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Aboalola, D., and V. K. M. Han. Different effects of insulin-like growth factor-1 and insulin-like growth factor-2 on myogenic differentiation of human mesenchymal stem cells. Stem Cells Int. 2017. https://doi.org/10.1155/2017/8286248.

    Article  Google Scholar 

  2. Arif, M., R. Pandey, P. Alam, S. Jiang, S. Sadayappan, A. Paul, and R. P. H. Ahmed. MicroRNA-210-mediated proliferation, survival, and angiogenesis promote cardiac repair post myocardial infarction in rodents. J. Mol. Med. 95:1369–1385, 2017.

    Article  Google Scholar 

  3. Augiere, C., S. Megy, R. El Malti, A. Boland, L. El Zein, B. Verrier, A. Mégarbané, J.-F. Deleuze, and P. Bouvagnet. A novel alpha cardiac actin (ACTC1) mutation mapping to a domain in close contact with myosin heavy chain leads to a variety of congenital heart defects, arrhythmia and possibly midline defects. PLoS ONE 10:0127903, 2015.

    Article  Google Scholar 

  4. Beier, J. P., F. F. Bitto, C. Lange, D. Klumpp, A. Arkudas, O. Bleiziffer, A. M. Boos, and U. Kneser. Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts. Cell Biol. Int. 35:397–406, 2011.

    Article  Google Scholar 

  5. Chao, W., and P. A. D’Amore. IGF2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 19:111–120, 2008.

    Article  Google Scholar 

  6. Chen, T. H., C. Y. Chen, H. C. Wen, C. C. Chang, H. D. Wang, C. P. Chuu, and C. H. Chang. YAP promotes myogenic differentiation via the MEK5-ERK5 pathway. FASEB J.: Off. Publ. Fed. Soc. Exp. Biol. 31:2963–2972, 2017.

    Article  Google Scholar 

  7. Cho, J., P. Zhai, Y. Maejima, and J. Sadoshima. Myocardial injection with GSK-3β-overexpressing bone marrow-derived mesenchymal stem cells attenuates cardiac dysfunction after myocardial infarction. Circ. Res. 108:478–489, 2011.

    Article  Google Scholar 

  8. Dai, R., Z. Wang, R. Samanipour, K.-I. Koo, and K. Kim. Adipose-derived stem cells for tissue engineering and regenerative medicine applications. Stem Cells Int. 201:19, 2016.

    Google Scholar 

  9. D’Angelo, F., R. Tiribuzi, I. Armentano, J. M. Kenny, S. Martino, and A. Orlacchio. Mechanotransduction: tuning stem cells fate. J. Funct. Biomater. 2:67–87, 2011.

    Article  Google Scholar 

  10. Dong, A., J. Shen, M. Zeng, and P. A. Campochiaro. Vascular cell-adhesion molecule-1 plays a central role in the proangiogenic effects of oxidative stress. Proc. Natl. Acad. Sci. 108:14614–14619, 2011.

    Article  Google Scholar 

  11. Dupont, S., L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. Le Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo. Role of YAP/TAZ in mechanotransduction. Nature. 474:179–183, 2011.

    Article  Google Scholar 

  12. Epp, T. A., I. M. Dixon, H. Y. Wang, M. J. Sole, and C. C. Liew. Structural organization of the human cardiac alpha-myosin heavy chain gene (MYH6). Genomics 18:505–509, 1993.

    Article  Google Scholar 

  13. Fischer, K. M., C. T. Cottage, W. Wu, S. Din, N. A. Gude, D. Avitable, P. Quijada, B. L. Collins, J. Fransioli, and M. A. Sussman. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase: Fischer: Pim-1 kinase enhances myocardial regeneration. Circulation 120:2077–2087, 2009.

    Article  Google Scholar 

  14. Frangogiannis, N. G. Pathophysiology of myocardial infarction. Compr. Physiol. 5:1841–1875, 2015.

    Article  Google Scholar 

  15. Furukawa, K. T., K. Yamashita, N. Sakurai, and S. Ohno. The epithelial circumferential actin belt regulates YAP/TAZ through nucleocytoplasmic shuttling of merlin. Cell Rep. 20(6):1435–1447, 2017.

    Article  Google Scholar 

  16. Go, A. S., D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, and W. B. Borden. Executive summary: heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127:143–152, 2013.

    Article  Google Scholar 

  17. Gwak, S.-J., S. H. Bhang, I.-K. Kim, S.-S. Kim, S.-W. Cho, and O. Jeon. The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes. Biomaterials 29:844–856, 2008.

    Article  Google Scholar 

  18. Haider, H., Y. J. Lee, S. Jiang, R. P. Ahmed, M. Ryon, and M. Ashraf. Phosphodiesterase inhibition with tadalafil provides longer and sustained protection of stem cells. Am. J. Physiol. 299:H1395–H1404, 2010.

    Google Scholar 

  19. Heng, B. C., H. K. Haider, E. K.-W. Sim, T. Cao, and S. C. Ng. Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro. Cardiovasc. Res. 62:34–42, 2004.

    Article  Google Scholar 

  20. Herberts, C. A., M. S. G. Kwa, and H. P. H. Hermsen. Risk factors in the development of stem cell therapy. J. Transl. Med. 9:29, 2011.

    Article  Google Scholar 

  21. Hu, X., S. P. Yu, J. L. Fraser, Z. Lu, M. E. Ogle, J. A. Wang, and L. Wei. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J. Thorac Cardiovasc. Surg. 135:799–808, 2008.

    Article  Google Scholar 

  22. Huang, Y., L. Zheng, X. Gong, X. Jia, W. Song, and M. Liu. Effect of cyclic strain on cardiomyogenic differentiation of rat bone marrow derived mesenchymal stem cells. PLoS ONE 7:e34960, 2012.

    Article  Google Scholar 

  23. Ilkovski, B., S. Clement, C. Sewry, K. N. North, and S. T. Cooper. Defining alpha-skeletal and alpha-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy. Neuromuscular Disord. 15:829–835, 2005.

    Article  Google Scholar 

  24. Kabaeva, Z. T., A. Perrot, B. Wolter, R. Dietz, N. Cardim, J. M. Correia, H. D. Schulte, A. A. Aldashev, M. M. Mirrakhimov, and K. J. Osterziel. Systematic analysis of the regulatory and essential myosin light chain genes: genetic variants and mutations in hypertrophic cardiomyopathy. Eur. J. Hum. Genet. 10:741–748, 2002.

    Article  Google Scholar 

  25. Kawai, T., T. Takahashi, M. Esaki, H. Ushikoshi, S. Nagano, and H. Fujiwara. Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2. Circ. J. 68:691–702, 2004.

    Article  Google Scholar 

  26. Kemp, T. J., T. J. Sadusky, M. Simon, R. Brown, M. Eastwood, D. A. Sassoon, and G. R. Coulton. Identification of a novel stretch-responsive skeletal muscle gene (Smpx). Genomics. 72:260–271, 2001.

    Article  Google Scholar 

  27. Klotz, B. J., D. Gawlitta, A. J. Rosenberg, J. Malda, and F. P. Melchels. Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol. 34:394–407, 2016.

    Article  Google Scholar 

  28. Kok, L. D., S. K. Tsui, M. Waye, C. C. Liew, C. Y. Lee, and K. P. Fung. Cloning and characterization of a cDNA encoding a novel fibroblast growth factor preferentially expressed in human heart. Biochem. Biophys. Res. Commun. 255:717–721, 1999.

    Article  Google Scholar 

  29. Kubalak, S. W., W. C. Miller-Hance, T. X. O’Brien, E. Dyson, and K. R. Chien. Chamber specification of atrial myosin light chain-2 expression precedes septation during murine cardiogenesis. J. Biol. Chem. 269:16961–16970, 1994.

    Google Scholar 

  30. Lanfear, D. E. Genetic variation in the natriuretic peptide system and heart failure. Heart Failure Rev. 15:219–228, 2010.

    Article  Google Scholar 

  31. Li, D., Z. Niu, W. Yu, Y. Qian, Q. Wang, Q. Li, Z. Yi, J. Luo, X. Wu, Y. Wang, R. J. Schwartz, and M. Liu. SMYD1, the myogenic activator, is a direct target of serum response factor and myogenin. Nucleic Acids Res. 37:7059–7071, 2009.

    Article  Google Scholar 

  32. Li, W., N. Ma, L.-L. Ong, C. Nesselmann, C. Klopsch, Y. Ladilov, D. Furlani, C. Piechaczek, J. M. Moebius, K. Lützow, A. Lendlein, C. Stamm, R. K. Li, G. Steinhoff. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem cells (Dayton, OH, U.S.), 25:2118-27, 2007.

  33. Li, H., S. Zuo, Z. He, Y. Yang, Z. Pasha, Y. Wang, and M. Xu. Paracrine factors released by GATA-4 overexpressed mesenchymal stem cells increase angiogenesis and cell survival. Am. J. Physiol. 299:H1772–H1781, 2010.

    Google Scholar 

  34. Low, B. C., C. Q. Pan, G. V. Shivashankar, A. Bershadsky, M. Sudol, and M. Sheetz. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett. 588:2663–2670, 2014.

    Article  Google Scholar 

  35. Matsumoto, R., T. Omura, M. Yoshiyama, T. Hayashi, S. Inamoto, K. R. Koh, K. Ohta, Y. Izumi, Y. Nakamura, K. Akioka, K. Takeuchi, and J. Yoshikawa. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 25:1168–1173, 2005.

    Article  Google Scholar 

  36. Mazhari, R., and J. M. Hare. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat. Clin. Pract. Cardiovasc. Med. Suppl 1:S21–S26, 2007.

    Article  Google Scholar 

  37. Mirotsou, M., T. M. Jayawardena, J. Schmeckpeper, M. Gnecchi, and V. J. Dzau. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J. Mol. Cell. Cardiol. 50:280–289, 2011.

    Article  Google Scholar 

  38. Mohri, Z., A. D. R. Hernandez, and R. Krams. The emerging role of YAP/TAZ in mechanotransduction. J. Thorac. Dis. 9:E507–E509, 2017.

    Article  Google Scholar 

  39. Mohsin, S., S. Siddiqi, B. Collins, and M. A. Sussman. Empowering adult stem cells for myocardial regeneration. Circ. Res. 109:1415–1428, 2011.

    Article  Google Scholar 

  40. Moulik, M., M. Vatta, S. H. Witt, A. M. Arola, R. T. Murphy, W. J. McKenna, A. M. Boriek, K. Oka, S. Labeit, N. E. Bowles, T. Arimura, A. Kimura, and J. A. Towbin. ANKRD1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene. J. Am. Coll. Cardiol. 54:325–333, 2009.

    Article  Google Scholar 

  41. Nagao, K., N. Sowa, K. Inoue, M. Tokunaga, K. Fukuchi, K. Uchiyama, H. Ito, F. Hayashi, T. Makita, T. Inada, M. Tanaka, T. Kimura, and K. Ono. Myocardial expression level of neural cell adhesion molecule correlates with reduced left ventricular function in human cardiomyopathy. Circ. Heart Failure 7:351–358, 2014.

    Article  Google Scholar 

  42. Orr, N., R. Arnaout, L. J. Gula, D. A. Spears, P. Leong-Sit, Q. Li, W. Tarhuni, S. Reischauer, V. S. Chauhan, M. Borkovich, S. Uppal, A. Adler, S. R. Coughlin, D. Y. Stainier, and M. H. Gollob. A mutation in the atrial-specific myosin light chain gene (MYL4) causes familial atrial fibrillation. Nat. Commun. 7:11303, 2016.

    Article  Google Scholar 

  43. Ou, L., W. Li, Y. Zhang, W. Wang, J. Liu, H. Sorg, D. Furlani, R. Gäbel, P. Mark, C. Klopsch, L. Wang, K. Lützow, A. Lendlein, K. Wagner, D. Klee, A. Liebold, R. K. Li, D. Kong, G. Steinhoff, and N. Ma. Intracardiac injection of matrigel induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model. J. Cell. Mol. Med. 15:1310–1318, 2011.

    Article  Google Scholar 

  44. Pacelli, S., R. Maloney, A. R. Chakravarti, J. Whitlow, S. Basu, S. Modaresi, S. Gehrke, and A. Paul. Controlling adult stem cell behavior using nanodiamond-reinforced hydrogel: implication in bone regeneration therapy. Sci. Rep. 7:6577, 2017.

    Article  Google Scholar 

  45. Pacelli, S., P. Paolicelli, I. Dreesen, S. Kobayashi, A. Vitalone, and M. A. Casadei. Injectable and photocross-linkable gels based on gellan gum methacrylate: a new tool for biomedical application. Int. J. Biol. Macromol. 72:1335–1342, 2015.

    Article  Google Scholar 

  46. Panciera, T., L. Azzolin, M. Cordenonsi, and S. Piccolo. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 18:758, 2017.

    Article  Google Scholar 

  47. Pandey, R., S. Velasquez, S. Durrani, M. Jiang, M. Neiman, J. S. Crocker, J. B. Benoit, J. Rubinstein, A. Paul, and A. Rafeeq. MicroRNA-1825 induces proliferation of adult cardiomyocytes and promotes cardiac regeneration post ischemic injury. Am. J. Transl. Res. 9:3120–3137, 2017.

    Google Scholar 

  48. Pankajakshan, D., and D. K. Agrawal. Mesenchymal stem cell paracrine factors in vascular repair and regeneration. J. Biomed. Technol. Res. 2014. https://doi.org/10.19104/jbtr.2014.107.

    Article  Google Scholar 

  49. Pankajakshan, D., and D. K. Agrawal. Mesenchymal stem cell paracrine factors in vascular repair and regeneration. J. Biomed. Technol. Res. 2014. https://doi.org/10.19104/jbtr.2014.107.

    Article  Google Scholar 

  50. Paul, A., Z. M. Binsalamah, A. A. Khan, S. Abbasia, C. B. Elias, D. Shum-Tim, and S. Prakash. A nanobiohybrid complex of recombinant baculovirus and Tat/DNA nanoparticles for delivery of Ang-1 transgene in myocardial infarction therapy. Biomaterials. 32:8304–8318, 2011.

    Article  Google Scholar 

  51. Paul, A., A. Hasan, H. A. Kindi, A. K. Gaharwar, V. T. S. Rao, M. Nikkhah, S. R. Shin, D. Krafft, M. R. Dokmeci, D. Shum-Tim, and A. Khademhosseini. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano. 8:8050–8062, 2014.

    Article  Google Scholar 

  52. Paul, A., M. Nayan, A. A. Khan, D. Shum-Tim, and S. Prakash. Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: investigation in rat heart with acute infarction. Int. J. Nanomed. 7:663–682, 2012.

    Article  Google Scholar 

  53. Paul, A., S. Srivastava, G. Chen, D. Shum-Tim, and S. Prakash. Functional assessment of adipose stem cells for xenotransplantation using myocardial infarction immunocompetent models: comparison with bone marrow stem cells. Cell Biochem. Biophys. 67:263–273, 2013.

    Article  Google Scholar 

  54. Pinto, J. R., M. S. Parvatiyar, M. A. Jones, J. Liang, M. J. Ackerman, and J. D. Potter. A functional and structural study of troponin C mutations related to hypertrophic cardiomyopathy. J. Biol. Chem. 284:19090–19100, 2009.

    Article  Google Scholar 

  55. Pons, J., Y. Huang, J. Arakawa-Hoyt, D. Washko, J. Takagawa, J. Ye, W. Grossman, and S. Hua. VEGF improves survival of mesenchymal stem cells in infarcted hearts. Biochem. Biophys. Res. Commun. 376:419–422, 2008.

    Article  Google Scholar 

  56. Rajasingh, S., J. Thangavel, A. Czirok, S. Samanta, K. F. Roby, B. Dawn, and J. Rajasingh. Generation of functional cardiomyocytes from efficiently generated human iPSCs and a novel method of measuring contractility. PLoS ONE 10:0134093, 2015.

    Article  Google Scholar 

  57. Rosova, I., M. Dao, B. Capoccia, D. Link, and J. A. Nolta. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem cells 26:2173–2182, 2008.

    Article  Google Scholar 

  58. Schmelter, M., B. Ateghang, S. Helmig, M. Wartenberg, and H. Sauer. Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J. 20:1182–1184, 2006.

    Article  Google Scholar 

  59. Sun, L., M. Cui, Z. Wang, X. Feng, J. Mao, P. Chen, M. Kangtao, F. Chen, and C. Zhou. Mesenchymal stem cells modified with angiopoietin-1 improve remodeling in a rat model of acute myocardial infarction. Biochem. Biophys. Res. Commun. 357:779–784, 2007.

    Article  Google Scholar 

  60. Sun, Q., Z. Zhang, and Z. Sun. The potential and challenges of using stem cells for cardiovascular repair and regeneration. Genes Dis. 1:113–119, 2014.

    Article  Google Scholar 

  61. Tang, J.-M., J.-N. Wang, L. Zhang, F. Zheng, J.-Y. Yang, X. Kong, L. Y. Guo, L. Chen, Y. Z. Huang, Y. Wan, and S. Y. Chen. VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovasc. Res. 91:402–411, 2011.

    Article  Google Scholar 

  62. Thakker, R., and P. Yang. Mesenchymal stem cell therapy for cardiac repair. Curr. Treat Options Cardiovasc. Med. 16:323, 2014.

    Article  Google Scholar 

  63. Tiso, N., M. Majetti, F. Stanchi, A. Rampazzo, R. Zimbello, A. Nava, and G. A. Danieli. Fine mapping and genomic structure of ACTN2, the human gene coding for the sarcomeric isoform of alpha-actinin-2, expressed in skeletal and cardiac muscle. Biochem. Biophys. Res. Commun. 265:256–259, 1999.

    Article  Google Scholar 

  64. Townsend, P. J., H. Farza, C. MacGeoch, N. K. Spurr, R. Wade, R. Gahlmann, M. H. Yacoub, and P. J. Barton. Human cardiac troponin T: identification of fetal isoforms and assignment of the TNNT2 locus to chromosome 1q. Genomics. 21:311–316, 1994.

    Article  Google Scholar 

  65. Trapnell, C., B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. van Baren, S. L. Salzberg, B. J. World, L. Pachter. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28:511–515, 2010.

    Article  Google Scholar 

  66. Turbay, D., S. B. Wechsler, K. M. Blanchard, and S. Izumo. Molecular cloning, chromosomal mapping, and characterization of the human cardiac-specific homeobox gene hCsx. Mol. Med. 2:86–96, 1996.

    Google Scholar 

  67. Van Den Bulcke, A. I., B. Bogdanov, N. De Rooze, E. H. Schacht, M. Cornelissen, and H. Berghmans. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1:31–38, 2000.

    Article  Google Scholar 

  68. Villard, E., L. Duboscq-Bidot, P. Charron, A. Benaiche, V. Conraads, N. Sylvius, and M. Komajda. Mutation screening in dilated cardiomyopathy: prominent role of the beta myosin heavy chain gene. Eur Heart J. 26:794–803, 2005.

    Article  Google Scholar 

  69. Wade, R., R. Eddy, T. B. Shows, and L. Kedes. cDNA sequence, tissue-specific expression, and chromosomal mapping of the human slow-twitch skeletal muscle isoform of troponin I. Genomics 7:346–357, 1990.

    Article  Google Scholar 

  70. Waters, R., P. Alam, S. Pacelli, A. R. Chakravarti, R. P. H. Ahmed, and A. Paul. Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomater. 2017. https://doi.org/10.1016/j.actbio.2017.12.025.

    Article  Google Scholar 

  71. Waters, R., S. Pacelli, R. Maloney, I. Medhi, R. P. H. Ahmed, and A. Paul. Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration. Nanoscale 8:7371–7376, 2016.

    Article  Google Scholar 

  72. Wickham, H. ggplot2. Wiley Interdiscip. Rev. 3:180–185, 2011.

    Article  Google Scholar 

  73. Xia, X., and S.-C. Zhang. Genetic Modification of human embryonic stem cells. Biotechnol. Genet. Eng. Rev. 24:297–309, 2007.

    Article  Google Scholar 

  74. Youssef, A., D. Aboalola, and V. K. M. Han. The roles of insulin-like growth factors in mesenchymal stem cell niche. Stem Cells Int. 201:9453108, 2017.

    Google Scholar 

  75. Yue, K., G. T. de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, and A. Khademhosseini. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 73:254–271, 2015.

    Article  Google Scholar 

  76. Zannad, F., N. Agrinier, and F. Alla. Heart failure burden and therapy. Europace 11(Suppl 5):v1–v9, 2009.

    Article  Google Scholar 

  77. Zeng, J., Y. Wang, Y. Wei, A. Xie, Y. Lou, and M. Zhang. Co-culture with cardiomyocytes induces mesenchymal stem cells to differentiate into cardiomyocyte-like cells and express heart development-associated genes. Cell Res. 18:S62, 2008.

    Article  Google Scholar 

  78. Zhao, L., T. Johnson, and D. Liu. Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases. Stem Cell Res. Ther. 8:125, 2017.

    Article  Google Scholar 

Download references

Acknowledgments

AP acknowledges an investigator grant provided by the Institutional Development Award (IDeA) from the National Institute of General Medical Sciences (NIGMS) of the NIH Award Number P20GM103638 and Umbilical Cord Matrix Project fund from State of Kansas. RPHA acknowledges the support from National Institute of Health (NIH) Grant 1R01HL-10690. AC acknowledges support from AHA 16GRNT31030030 and NIH GM102801. Research reported in this publication was made possible by the services of Dr. Erik Lundquist and Ms. Jennifer Hackett at the KU Genome Sequencing Core. The authors also acknowledge the services provided by Dr. Stuart Macdonald and Ms. Boryana S Koseva at the KU-INBRE Bioinformatics Core. This core lab is supported by an Institutional Development Award (IDeA) from the NIGMS (P20GM103418) from the NIH. We also gratefully thank Ms. Heather Shinogle of the University of Kansas Microscopy and Analytical Imaging Laboratory for her assistance with confocal fluorescence microscopy. We further acknowledge Ms. Dona Gréta Isai from the University of Kansas Medical Center for her help in the non-invasive image analysis of cardiomyocytes contractility.

Conflict of interest

Aparna R. Chakravarti, Settimio Pacelli, Perwez Alam, Samik Bagchi, Saman Modaresi, Andras Czirok, Rafeeq P.H. Ahmed, and Arghya Paul declare no conflict of interests.

Ethical Standards

All animal studies were carried out in accordance with the Guide for the Care and Use of Laboratory Animals (NIH publication No. 85-23 revised 1985) and approved by IACUC. No human studies were carried out by the authors for this article. Only commercially obtained cells were used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arghya Paul.

Additional information

Associate Editor William E. Bentley oversaw the review of this article.

Arghya Paul, PhD, is an Assistant Professor at The University of Kansas (KU) in the Department of Chemical and Petroleum Engineering, and Bioengineering Graduate Program. He is also a member of The Center for Epigenetics and Stem Cell Biology, KU Medical Center. His Biointel Research Laboratory, funded by National Institute of General Medical Sciences and State of Kansas, focuses on developing new class of nano-bioactive hydrogels, biotransporters and engineered stem cells for cardiovascular and bone research. Broadly, his work aims to (1) innovate and study transformative technologies at the biomolecular and cellular level (2) exploit the cell-matrix interactions and mechanistic pathways, and (3) discover therapeutic strategies that can be translated to point-of-care patient applications. Before joining KU, Dr. Paul completed his postdoctoral fellowship at Harvard-MIT Division of Health Sciences and Technology and Wyss Institute for Biologically Inspired Engineering, working in the areas of nanomaterials, stem cells and regeneration therapy. He received his MS and PhD degrees in Biotechnology and Biomedical Engineering from McGill University, Canada, where his research was focused on developing gene-eluting vascular stents and microengineered stem cells for cardiovascular therapy. Dr. Paul has contributed to 75 + journal articles, 15 book chapters and holds multiple invention disclosures and patents. Based on his co-patented technologies, he is currently directing MangoGen Pharma Inc., a start-up company specialized in gene delivery technologies, as Chief Scientific Officer. His academic and research achievements have been acknowledged with multiple prestigious awards, fellowships and recognitions. To name a few: Fred Kurata Memorial Professorship at KU, Raymond Oenbring Award for Excellence in Teaching Chemical Engineering, Outstanding Young Scientist (talent category) by Macromolecular Chemistry Physics journal, Banting Postdoctoral Fellowship (Canada), Postdoctoral Training Fellowship (Le Fonds de Recherche du Quebec Nature et Technologies, FRQNT), Natural Sciences and Engineering Research Council of Canada (NSERC) Alexander Graham Bell Canada Graduate Scholarship, NSERC Michael Smith Foreign Study Supplement Award, McGill Medstar Award, Leslie A. Geddes Award for Best PhD Thesis.

figure a

This article is part of the 2018 CMBE Young Innovators special issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 206 kb)

Supplementary material 2 (WMV 12,122 kb)

Supplementary material 3 (WMV 60,309 kb)

Supplementary material 4 (WMV 41,200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravarti, A.R., Pacelli, S., Alam, P. et al. Pre-Conditioning Stem Cells in a Biomimetic Environment for Enhanced Cardiac Tissue Repair: In Vitro and In Vivo Analysis. Cel. Mol. Bioeng. 11, 321–336 (2018). https://doi.org/10.1007/s12195-018-0543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-018-0543-x

Keywords

Navigation