Skip to main content
Log in

Encapsulation of Mesenchymal Stem Cells in 3D Ovarian Cell Constructs Promotes Stable and Long-Term Hormone Secretion with Improved Physiological Outcomes in a Syngeneic Rat Model

  • Bioengineering and Enabling Technologies
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Loss of ovarian function (e.g., due to menopause) leads to profound physiological effects in women including changes in sexual function and osteoporosis. Hormone therapies are a known solution, but their use has significantly decreased due to concerns over cardiovascular disease and certain cancers. We recently reported a tissue-engineering strategy for cell hormone therapy (cHT) in which granulosa cells and theca cells are encapsulated to mimic native ovarian follicles. cHT improved physiological outcomes and safety compared to pharmacological hormone therapies in a rat ovariectomy model. However, cHT did not achieve estrogen levels as high as ovary-intact animals. In this report, we examined if hormone secretion from cHT constructs is impacted by incorporation of bone marrow-derived mesenchymal stem cells (BMSC) since these cells contain regulatory factors such as aromatase necessary for estrogen production. Incorporation of BMSCs led to enhanced estrogen secretion in vitro. Moreover, cHT constructs with BMSCs achieved estrogen secretion levels significantly greater than constructs without BMSCs in ovariectomized rats from 70 to 90 days after implantation, while also regulating pituitary hormones. cHT constructs with BMSC ameliorated estrogen deficiency-induced uterine atrophy without hyperplasia. The results indicate that inclusion of BMSC in cHT strategies can improve performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alexander, I. M. The history of hormone therapy use and recent controversy related to heart disease and breast cancer arising from prevention trial outcomes. J. Midwifery Womens Health 57:547–557, 2012.

    PubMed  Google Scholar 

  2. Anderson, G. L., M. Limacher, A. R. Assaf, T. Bassford, S. A. Beresford, H. Black, D. Bonds, R. Brunner, R. Brzyski, B. Caan, R. Chlebowski, D. Curb, M. Gass, J. Hays, G. Heiss, S. Hendrix, B. V. Howard, J. Hsia, A. Hubbell, R. Jackson, K. C. Johnson, H. Judd, J. M. Kotchen, L. Kuller, A. Z. LaCroix, D. Lane, R. D. Langer, N. Lasser, C. E. Lewis, J. Manson, K. Margolis, J. Ockene, M. J. O’Sullivan, L. Phillips, R. L. Prentice, C. Ritenbaugh, J. Robbins, J. E. Rossouw, G. Sarto, M. L. Stefanick, L. Van Horn, J. Wactawski-Wende, R. Wallace, S. Wassertheil-Smoller, and C. Women’s Health Initiative Steering. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA 291:1701–1712, 2004.

    CAS  PubMed  Google Scholar 

  3. Arzouni, A. A., A. Vargas-Seymour, C. L. Rackham, P. Dhadda, G. C. Huang, P. Choudhary, N. Nardi, A. J. F. King, and P. M. Jones. Mesenchymal stromal cells improve human islet function through released products and extracellular matrix. Clin. Sci. (Lond.) 131:2835–2845, 2017.

    CAS  Google Scholar 

  4. Barbaglia, G., F. Macia, M. Comas, M. Sala, M. del Mar Vernet, M. Casamitjana, and X. Castells. Trends in hormone therapy use before and after publication of the Women’s Health Initiative trial: 10 years of follow-up. Menopause 16:1061–1064, 2009.

    PubMed  Google Scholar 

  5. Brinton, L. A., and A. S. Felix. Menopausal hormone therapy and risk of endometrial cancer. J. Steroid Biochem. Mol. Biol. 142:83–89, 2014.

    CAS  PubMed  Google Scholar 

  6. Buist, D. S., K. M. Newton, D. L. Miglioretti, K. Beverly, M. T. Connelly, S. Andrade, C. L. Hartsfield, F. Wei, K. A. Chan, and L. Kessler. Hormone therapy prescribing patterns in the United States. Obstet. Gynecol. 104:1042–1050, 2004.

    PubMed  Google Scholar 

  7. Burger, H. G. Androgen production in women. Fertil. Steril. 77(Suppl 4):S3–5, 2002.

    PubMed  Google Scholar 

  8. Chlebowski, R. T., S. L. Hendrix, R. D. Langer, M. L. Stefanick, M. Gass, D. Lane, R. J. Rodabough, M. A. Gilligan, M. G. Cyr, C. A. Thomson, J. Khandekar, H. Petrovitch, A. McTiernan, and W. H. I. Investigators. Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women’s Health Initiative Randomized Trial. JAMA 289:3243–3253, 2003.

    CAS  PubMed  Google Scholar 

  9. Chlebowski, R. T., L. H. Kuller, R. L. Prentice, M. L. Stefanick, J. E. Manson, M. Gass, A. K. Aragaki, J. K. Ockene, D. S. Lane, G. E. Sarto, A. Rajkovic, R. Schenken, S. L. Hendrix, P. M. Ravdin, T. E. Rohan, S. Yasmeen, G. Anderson, and W. H. I. Investigators. Breast cancer after use of estrogen plus progestin in postmenopausal women. N. Engl. J. Med. 360:573–587, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Clarkson, T. B., G. C. Melendez, and S. E. Appt. Timing hypothesis for postmenopausal hormone therapy: its origin, current status, and future. Menopause 20:342–353, 2013.

    PubMed  Google Scholar 

  11. Ebot, D., H. Hilal, M. Carroll, and J. Coey. Fundamentals of reproductive endocrinology. In: Clinical Reproductive Science, edited by M. Carroll. Hoboken, NJ: Wiley-Blackwell, 2019, pp. 45–56.

    Google Scholar 

  12. Findlay, J. K., A. E. Drummond, K. L. Britt, M. Dyson, N. G. Wreford, D. M. Robertson, N. P. Groome, M. E. Jones, and E. R. Simpson. The roles of activins, inhibins and estrogen in early committed follicles. Mol. Cell. Endocrinol. 163:81–87, 2000.

    CAS  PubMed  Google Scholar 

  13. Gambacciani, M., and M. Levancini. Hormone replacement therapy: who should be treated? Minerva Ginecol. 67:249–255, 2015.

    CAS  PubMed  Google Scholar 

  14. Ghorbani, A., and H. Naderi-Meshkin. The endocrine regulation of stem cells: physiological importance and pharmacological potentials for cell-based therapy. Curr. Stem Cell Res. Ther. 11:19–34, 2016.

    CAS  PubMed  Google Scholar 

  15. Grady, D., T. Gebretsadik, K. Kerlikowske, V. Ernster, and D. Petitti. Hormone replacement therapy and endometrial cancer risk: a meta-analysis. Obstet. Gynecol. 85:304–313, 1995.

    CAS  PubMed  Google Scholar 

  16. Green, L. J., H. Zhou, V. Padmanabhan, and A. Shikanov. Adipose-derived stem cells promote survival, growth, and maturation of early-stage murine follicles. Stem Cell Res. Ther. 10:102, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo, J. Q., X. Gao, Z. J. Lin, W. Z. Wu, L. H. Huang, H. Y. Dong, J. Chen, J. Lu, Y. F. Fu, J. Wang, Y. J. Ma, X. W. Chen, Z. X. Wu, F. Q. He, S. L. Yang, L. M. Liao, F. Zheng, and J. M. Tan. BMSCs reduce rat granulosa cell apoptosis induced by cisplatin and perimenopause. BMC Cell Biol. 14:18, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo, X. X., J. L. Zhou, Q. Xu, X. Lu, Y. J. Liang, J. Weng, and X. L. Shi. Prevention of osteoporosis in mice after ovariectomy via allograft of microencapsulated ovarian cells. Anat. Rec. (Hoboken) 293:200–207, 2010.

    CAS  Google Scholar 

  19. Heim, M., O. Frank, G. Kampmann, N. Sochocky, T. Pennimpede, P. Fuchs, W. Hunziker, P. Weber, I. Martin, and I. Bendik. The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells. Endocrinology 145:848–859, 2004.

    CAS  PubMed  Google Scholar 

  20. Hornick, J. E., F. E. Duncan, L. D. Shea, and T. K. Woodruff. Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro. Hum. Reprod. 27:1801–1810, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Karim, R., R. M. Dell, D. F. Greene, W. J. Mack, J. C. Gallagher, and H. N. Hodis. Hip fracture in postmenopausal women after cessation of hormone therapy: results from a prospective study in a large health management organization. Menopause 18:1172–1177, 2011.

    PubMed  PubMed Central  Google Scholar 

  22. Kolb, M., P. Bonniaud, T. Galt, P. J. Sime, M. M. Kelly, P. J. Margetts, and J. Gauldie. Differences in the fibrogenic response after transfer of active transforming growth factor-beta1 gene to lungs of “fibrosis-prone” and “fibrosis-resistant” mouse strains. Am. J. Respir. Cell Mol. Biol. 27:141–150, 2002.

    CAS  PubMed  Google Scholar 

  23. Kolb, M., P. J. Margetts, P. J. Sime, and J. Gauldie. Proteoglycans decorin and biglycan differentially modulate TGF-beta-mediated fibrotic responses in the lung. Am. J. Physiol. 280:L1327–1334, 2001.

    CAS  Google Scholar 

  24. Liu, C., X. Xia, W. Miao, X. Luan, L. Sun, Y. Jin, and L. Liu. An ovarian cell microcapsule system simulating follicle structure for providing endogenous female hormones. Int. J. Pharm. 455:312–319, 2013.

    CAS  PubMed  Google Scholar 

  25. Long, R., Y. Liu, S. Wang, L. Ye, and P. He. Co-microencapsulation of BMSCs and mouse pancreatic beta cells for improving the efficacy of type I diabetes therapy. Int. J. Artif. Org. 40:169–175, 2017.

    CAS  Google Scholar 

  26. North American Menopause S. Estrogen and progestogen use in peri- and postmenopausal women: March 2007 position statement of The North American Menopause Society. Menopause 14(168–182):2007, 2007.

    Google Scholar 

  27. Opara, E. C., S. H. Mirmalek-Sani, O. Khanna, M. L. Moya, and E. M. Brey. Design of a bioartificial pancreas(+). J. Investig. Med. 58:831–837, 2010.

    PubMed  PubMed Central  Google Scholar 

  28. Pino, A. M., J. M. Rodriguez, S. Rios, P. Astudillo, L. Leiva, G. Seitz, M. Fernandez, and J. P. Rodriguez. Aromatase activity of human mesenchymal stem cells is stimulated by early differentiation, vitamin D and leptin. J. Endocrinol. 191:715–725, 2006.

    CAS  PubMed  Google Scholar 

  29. Rossouw, J. E., G. L. Anderson, R. L. Prentice, A. Z. LaCroix, C. Kooperberg, M. L. Stefanick, R. D. Jackson, S. A. Beresford, B. V. Howard, K. C. Johnson, J. M. Kotchen, and J. Ockene. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288:321–333, 2002.

    CAS  PubMed  Google Scholar 

  30. Rossouw, J. E., R. L. Prentice, J. E. Manson, L. Wu, D. Barad, V. M. Barnabei, M. Ko, A. Z. LaCroix, K. L. Margolis, and M. L. Stefanick. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA 297:1465–1477, 2007.

    CAS  PubMed  Google Scholar 

  31. Santoro, N., C. N. Epperson, and S. B. Mathews. Menopausal symptoms and their management. Endocrinol. Metab. Clin. North Am. 44:497–515, 2015.

    PubMed  PubMed Central  Google Scholar 

  32. Shin, J. Y., J. H. Jeong, J. Han, S. H. Bhang, G. J. Jeong, M. R. Haque, T. A. Al-Hilal, M. Noh, Y. Byun, and B. S. Kim. Transplantation of heterospheroids of islet cells and mesenchymal stem cells for effective angiogenesis and antiapoptosis. Tissue Eng. Part A 21:1024–1035, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sime, P. J., Z. Xing, F. L. Graham, K. G. Csaky, and J. Gauldie. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J. Clin. Invest. 100:768–776, 1997.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Simpson, E. R. Sources of estrogen and their importance. J. Steroid Biochem. Mol. Biol. 86:225–230, 2003.

    CAS  PubMed  Google Scholar 

  35. Sittadjody, S., J. M. Saul, S. Joo, J. J. Yoo, A. Atala, and E. C. Opara. Engineered multilayer ovarian tissue that secretes sex steroids and peptide hormones in response to gonadotropins. Biomaterials 34:2412–2420, 2013.

    CAS  PubMed  Google Scholar 

  36. Sittadjody, S., J. M. Saul, J. P. McQuilling, S. Joo, T. C. Register, J. J. Yoo, A. Atala, and E. C. Opara. In vivo transplantation of 3D encapsulated ovarian constructs in rats corrects abnormalities of ovarian failure. Nat. Commun. 8:1858, 2017.

    PubMed  PubMed Central  Google Scholar 

  37. Sittadjody, S., J. M. Saul, and E. C. Opara. Compartmentalization of two cell types in multilayered alginate microcapsules. Methods Mol. Biol. 1479:225–235, 2017.

    CAS  PubMed  Google Scholar 

  38. Skouby, S. O., F. Al-Azzawi, D. Barlow, J. Calaf-Alsina Erdogan Ertungealp, A. Gompel, A. Graziottin, D. Hudita, A. Pines, S. Rozenberg, G. Samsioe, J. C. Stevenson, M. European, and S. Andropause. Climacteric medicine: European Menopause and Andropause Society (EMAS) 2004/2005 position statements on peri- and postmenopausal hormone replacement therapy. Maturitas 51:8–14, 2005.

    PubMed  Google Scholar 

  39. Smith, R. M., A. Shikanov, E. Kniazeva, D. Ramadurai, T. K. Woodruff, and L. D. Shea. Fibrin-mediated delivery of an ovarian follicle pool in a mouse model of infertility. Tissue Eng. Part A 20:3021–3030, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Spaepen, P., S. De Boodt, J. M. Aerts, and J. V. Sloten. Digital image processing of live/dead staining. Methods Mol. Biol. 740:209–230, 2011.

    CAS  PubMed  Google Scholar 

  41. Tendulkar, S., S. H. Mirmalek-Sani, C. Childers, J. Saul, E. C. Opara, and M. K. Ramasubramanian. A three-dimensional microfluidic approach to scaling up microencapsulation of cells. Biomed. Microdev. 14:461–469, 2012.

    CAS  Google Scholar 

  42. Vaithilingam, V., M. D. M. Evans, D. M. Lewy, P. A. Bean, S. Bal, and B. E. Tuch. Co-encapsulation and co-transplantation of mesenchymal stem cells reduces pericapsular fibrosis and improves encapsulated islet survival and function when allografted. Sci. Rep. 7:10059, 2017.

    PubMed  PubMed Central  Google Scholar 

  43. White, S. A., J. A. Shaw, and D. E. Sutherland. Pancreas transplantation. Lancet 373:1808–1817, 2009.

    CAS  PubMed  Google Scholar 

  44. Xu, M., P. K. Kreeger, L. D. Shea, and T. K. Woodruff. Tissue-engineered follicles produce live, fertile offspring. Tissue Eng. 12:2739–2746, 2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yin, H., S. G. Kristensen, H. Jiang, A. Rasmussen, and C. Y. Andersen. Survival and growth of isolated pre-antral follicles from human ovarian medulla tissue during long-term 3D culture. Hum. Reprod. 31:1531–1539, 2016.

    CAS  PubMed  Google Scholar 

  46. Zhou, S., L. Zhao, T. Yi, Y. Wei, and X. Zhao. Menopause-induced uterine epithelium atrophy results from arachidonic acid/prostaglandin E2 axis inhibition-mediated autophagic cell death. Sci. Rep. 6:31408, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by Jack and Pamela Egan. The study was also supported, in part, by the National Institutes of Health (NIH) Grant # R01AR061391 (JMS). The content of the article is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin M. Saul.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10439_2019_2334_MOESM1_ESM.tif

Supplemental Figure 1. Schematic of process of steroidogenesis. Theca cells express CYP11A1, 3βHSD, and CYP17A1, which are required for the production of androgens. Granulosa cells express aromatase, which allows for the conversion of androgens to estrone and estradiol. Thus, in native physiology, conversion of cholesterol to estrogen requires each of these enzymes. BMSCs express CYP19A1, but do not express CYP17A1, CYP11A1, or 3βHSD, which explains ability to enhance estrogen production but not progesterone. (TIFF 1405 kb)

10439_2019_2334_MOESM2_ESM.tif

Supplemental Figure 2. Additional immunohistochemistry for BMSCs. Cells are positive for CD105 (A). BMSC were negative for CD31 (B), CD45 (C), CYP17A1 (D), CYP11A1 (E), and 3βHSD (F). Positive staining for CD105 and negative staining for CD31 and CD45 are further evidence of isolation of BMSCs. The negative staining for CYP17A1, CYP11A1 and 3βHSD help to explain why the BMSCs are unable to produce progesterone and androgens. (TIFF 3947 kb)

10439_2019_2334_MOESM3_ESM.tif

Supplemental Figure 3. Resected omentum pouch after the in vivo treatment period of 90 days. Similar vascular density visible among the omentum pouches containing constructs with BMSC (A) and without BMSC (C). Gross images display intact microcapsule-constructs through the translucent omentum pouch containing constructs with BMSC (B) and without BMSC (D). The histology of resected omentum pouch shows no visible fibrous capsule around the constructs with BMSC (E) or without BMSC (F) (scale bar on E and F = 100 µm). (TIFF 13577 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sittadjody, S., Enck, K.M., Wells, A. et al. Encapsulation of Mesenchymal Stem Cells in 3D Ovarian Cell Constructs Promotes Stable and Long-Term Hormone Secretion with Improved Physiological Outcomes in a Syngeneic Rat Model. Ann Biomed Eng 48, 1058–1070 (2020). https://doi.org/10.1007/s10439-019-02334-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02334-w

Keywords

Navigation