Skip to main content

Advertisement

Log in

The novel bone alkaline phosphatase B1x isoform in children with kidney disease

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The bone alkaline phosphatase (BALP) B1x isoform has previously only been identified in some adults with chronic kidney disease on dialysis and in human bone tissue. Twenty-nine patients, 3–20 years of age, with reduced renal function due to a variety of kidney diseases were examined. We measured parathyroid hormone (PTH), biointact (whole 1–84) PTH, osteoprotegerin (OPG), CrossLaps (CTX), tartrate-resistant acid phosphatase isoform 5b (TRACP 5b) type I procollagen intact amino-terminal propeptide (PINP), osteocalcin, total alkaline phosphatase (ALP), and BALP isoforms B/I, B1x, B1, and B2. Fifty percent higher levels were detected of PTH vs. biointact PTH, demonstrating non-(1–84) PTH fragments detected by the PTH assay. Increased activities were found in five, four, and three patients for total ALP, B1, and B2, respectively. Sixteen (55%) patients had increased B/I levels. B1x was identified in two (7%) patients, who had OPG levels in the higher range independently of age, glomerular filtration rate (GFR), and biointact PTH. B1x was identified prior to and after 9 days of growth hormone (GH) therapy in one patient but not after 1, 3, 6, and 12 months, however. In conclusion, our study demonstrates that the novel BALP B1x isoform is occasionally found to be present in children with kidney disease but to a lesser degree in comparison with adults with chronic kidney disease on dialysis. It is essential to perform bone histomorphometry for future investigations in order to elucidate the exact nature of circulating B1x in patients with kidney disease for accurate classification of type of renal bone disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hruska K (2000) Pathophysiology of renal osteodystrophy. Pediatr Nephrol 333:166–174

    Google Scholar 

  2. Kuizon BD, Salusky IB (2003) Renal osteodystrophy: pathogenesis, diagnosis, and treatment. In: Glorieux FH, Pettifor JM, Jüppner H (Eds.) Pediatric bone. Biology and diseases. Academic Press, London, pp 679–701

    Google Scholar 

  3. Kuizon BD, Salusky IB (1999) Growth retardation in children with chronic renal failure. J Bone Miner Res 14:1680–1690

    CAS  PubMed  Google Scholar 

  4. Salusky IB, Ramirez JA, Oppenheim W, Gales B, Segre GV, Goodman WG (1994) Biochemical markers of renal osteodystrophy in pediatric patients undergoing CAPD/CCPD. Kidney Int 45:253–258

    CAS  PubMed  Google Scholar 

  5. Ziolkowska H, Panczyk-Tomaszewska M, Debinski A, Polowiec Z, Sawicki A, Sieniawska M (2000) Bone biopsy results and serum bone turnover parameters in uremic children. Acta Paediatr 89:666–671

    CAS  PubMed  Google Scholar 

  6. Ureña P, de Vernejoul M-C (1999) Circulating biochemical markers of bone remodeling in uremic patients. Kidney Int 55:2141–2156

    PubMed  Google Scholar 

  7. Rix M, Andreassen H, Eskildsen P, Langdahl B, Olgaard K (1999) Bone mineral density and biochemical markers of bone turnover in patients with predialysis chronic renal failure. Kidney Int 56:1084–1093

    CAS  PubMed  Google Scholar 

  8. Bervoets ARJ, Spasovski GB, Behets GJ, Dams G, Polenakovic MH, Zafirovska K, Van Hoof VO, De Broe ME, D’Haese PC (2003) Useful biochemical markers for diagnosing renal osteodystrophy in predialysis endstage renal failure patients. Am J Kidney Dis 41:997–1007

    CAS  PubMed  Google Scholar 

  9. Slatopolsky E, Finch J, Clay P, Martin D, Sicard G, Singer G, Gao P, Cantor T, Dusso A (2000) A novel mechanism for skeletal resistance in uremia. Kidney Int 58:753–761

    CAS  PubMed  Google Scholar 

  10. Gao P, Scheibel S, D’Amour P, John MR, Rao SD, Schmidt-Gayk H, Cantor TL (2001) Development of a novel immunoradiometric assay exclusively for biologically active whole parathyroid hormone 1–84: implications for improvement of accurate assessment of parathyroid function. J Bone Miner Res 16:605–614

    CAS  PubMed  Google Scholar 

  11. Inaba M, Nakatsuka K, Imanishi Y, Watanabe M, Mamiya Y, Ishimura E, Nishizawa Y (2004) Technical and clinical characterization of the bioPTH (1–84) immunochemiluminometric assay and comparison with a secondgeneration assay for parathyroid hormone. Clin Chem 50:385–390

    CAS  PubMed  Google Scholar 

  12. Lee SK, Lorenzo JA (1999) Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology 140:3552–3561

    CAS  PubMed  Google Scholar 

  13. Rogers A, Eastell R (2005) Circulating osteoprotegerin and receptor activator for nuclear factor kB ligand: clinical utility in metabolic bone disease assessment. J Clin Endocrinol Metab 90:6323–6331

    CAS  PubMed  Google Scholar 

  14. Magnusson P, Degerblad M, Sääf M, Larsson L, Thorén M (1997) Different responses of bone alkaline phosphatase isoforms during recombinant insulin-like growth factor-I (IGF-I) and during growth hormone therapy in adults with growth hormone deficiency. J Bone Miner Res 12:210–220

    CAS  PubMed  Google Scholar 

  15. Whyte MP (1994) Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev 15:439–461

    CAS  PubMed  Google Scholar 

  16. Johnson KA, Hessle L, Vaingankar S, Wennberg C, Mauro S, Narisawa S, Goding JW, Sano K, Millán JL, Terkeltaub R (2000) Osteoblast tissue-nonspecific alkaline phosphatase antagonizes and regulates PC-1. Am J Physiol Regul Integr Comp Physiol 279:R1365–R1377

    CAS  PubMed  Google Scholar 

  17. Magnusson P, Löfman O, Larsson L (1992) Determination of alkaline phosphatase isoenzymes in serum by high-performance liquid chromatography with postcolumn reaction detection. J Chromatogr 576:79–86

    CAS  PubMed  Google Scholar 

  18. Magnusson P, Löfman O, Larsson L (1993) Methodological aspects on separation and reaction conditions of bone and liver alkaline phosphatase isoform analysis by high-performance liquid chromatography. Anal Biochem 211:156–163

    CAS  PubMed  Google Scholar 

  19. Magnusson P, Ärlestig L, Paus E, Di Mauro S, Testa MP, Stigbrand T, Farley JR, Nustad K, Millán JL (2002) Monoclonal antibodies against tissue-nonspecific alkaline phosphatase. Report of the ISOBM TD9 workshop. Tumour Biol 23:228–248

    CAS  PubMed  Google Scholar 

  20. Magnusson P, Farley JR (2002) Differences in sialic acid residues among bone alkaline phosphatase isoforms: a physical, biochemical, and immunological characterization. Calcif Tissue Int 71:508–518

    CAS  PubMed  Google Scholar 

  21. Magnusson P, Häger A, Larsson L (1995) Serum osteocalcin and bone and liver alkaline phosphatase isoforms in healthy children and adolescents. Pediatr Res 38:955–961

    CAS  PubMed  Google Scholar 

  22. Magnusson P, Sharp CA, Magnusson M, Risteli J, Davie MWJ, Larsson L (2001) Effect of chronic renal failure on bone turnover and bone alkaline phosphatase isoforms. Kidney Int 60:257–265

    CAS  PubMed  Google Scholar 

  23. Magnusson P, Sharp CA, Farley JR (2002) Different distributions of human bone alkaline phosphatase isoforms in serum and bone tissue extracts. Clin Chim Acta 325:59–70

    CAS  PubMed  Google Scholar 

  24. Levey AS, Eckardt K-U, Tsukamoto Y, Levin A, Coresh J, Rossert J, de Zeeuw D, Hostetter TH, Lameire N, Eknoyan G (2005) Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 67:2089–2100

    PubMed  Google Scholar 

  25. Schwartz GJ, Haycock GB, Edelmann Jr CM, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–269

    CAS  PubMed  Google Scholar 

  26. Nussbaum SR, Zahradnik RJ, Lavigne JR, Brennan GL, Nozawa-Ung K, Kim LY, Keutmann HT, Wang C-A, Potts Jr JT, Segre GV (1987) Highly sensitive two-site immunoradiometric assay of parathyrin, and its clinical utility in evaluating patients with hypercalcemia. Clin Chem 33:1364–1367

    CAS  PubMed  Google Scholar 

  27. Szulc P, Hofbauer LC, Heufelder AE, Roth S, Delmas PD (2001) Osteoprotegerin serum levels in men: correlation with age, estrogen, and testosterone status. J Clin Endocrinol Metab 86:3162–3165

    CAS  PubMed  Google Scholar 

  28. Masters PW, Jones RG, Purves DA, Cooper EH, Cooney JM (1994) Commercial assays for serum osteocalcin give clinically discordant results. Clin Chem 40:358–363

    CAS  PubMed  Google Scholar 

  29. Melkko J, Kauppila S, Niemi S, Risteli L, Haukipuro K, Jukkola A, Risteli J (1996) Immunoassay for intact amino-terminal propeptide of human type I procollagen. Clin Chem 42:947–954

    CAS  PubMed  Google Scholar 

  30. Rosenquist C, Fledelius C, Christgau S, Pedersen BJ, Bonde M, Qvist P, Christiansen C (1998) Serum CrossLaps One Step ELISA. First application of monoclonal antibodies for measurement in serum of bonerelated degradation products from C-terminal telopeptides of type I collagen. Clin Chem 44:2281–2289

    CAS  PubMed  Google Scholar 

  31. Sassi M-L, Eriksen H, Risteli L, Niemi S, Mansell J, Gowen M, Risteli J (2000) Immunochemical characterization of assay for carboxyterminal telopeptide of human type I collagen: loss of antigenicity by treatment with cathepsin K. Bone 26:367–373

    CAS  PubMed  Google Scholar 

  32. Halleen JM, Alatalo SL, Suominen H, Cheng SL, Janckila AJ, Väänänen HK (2000) Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res 15:1337–1345

    CAS  PubMed  Google Scholar 

  33. Cioffi M, Corradino M, Gazzerro P, Vietri MT, Di Macchia C, Contursi A, Colicigno R, Catalano T, Molinari AM (2000) Serum concentrations of intact parathyroid hormone in healthy children. Clin Chem 46:863–864

    CAS  PubMed  Google Scholar 

  34. Buzi F, Maccarinelli G, Guaragni B, Ruggeri F, Radetti G, Meini A, Mazzolari E, Cocchi D (2004) Serum osteoprotegerin and receptor activator of nuclear factors kB (RANKL) concentrations in normal children and in children with pubertal precocity, Turner’s syndrome and rheumatoid arthritis. Clin Endocrinol 60:87–91

    CAS  Google Scholar 

  35. Tarallo P, Henny J, Fournier B, Siest G (1990) Plasma osteocalcin: biological variations and reference limits. Scand J Clin Lab Invest 50:649–655

    CAS  PubMed  Google Scholar 

  36. van der Sluis IM, Hop WC, van Leeuwen JPTM, Pols HAP, de Muinck Keizer-Schrama SMPF (2002) A crosssectional study on biochemical parameters of bone turnover and vitamin D metabolites in healthy dutch children and young adults. Horm Res 57:170–179

    PubMed  Google Scholar 

  37. Crofton PM, Evans N, Taylor MRH, Holland CV (2002) Serum CrossLaps: pediatric intervals from birth to 19 years of age. Clin Chem 48:671–673

    CAS  PubMed  Google Scholar 

  38. Alatalo SL, Ivaska KK, Waguespack SG, Econs MJ, Väänänen HK, Halleen JM (2004) Osteoclast-derived serum tartrate-resistant acid phosphatase 5b in Albers-Schönberg disease (type II autosomal dominant osteopetrosis). Clin Chem 50:883–890

    CAS  PubMed  Google Scholar 

  39. Magnusson P, Larsson L, Magnusson M, Davie MWJ, Sharp CA (1999) Isoforms of bone alkaline phosphatase: characterization and origin in human trabecular and cortical bone. J Bone Miner Res 14:1926–1933

    CAS  PubMed  Google Scholar 

  40. Ohlsson C, Bengtsson B-Å, Isaksson OGP, Andreassen TT, Slootweg MC (1998) Growth hormone and bone. Endocr Rev 19:55–79

    CAS  Google Scholar 

  41. Haffner D, Schaefer F, Nissel R, Wühl E, Tönshoff B, Mehls O (2000) Effect of growth hormone treatment on the adult height of children with chronic renal failure. German study group for growth hormone treatment in chronic renal failure. N Engl J Med 343:923–930

    CAS  PubMed  Google Scholar 

  42. Kaskel F (2003) Chronic renal disease: a growing problem. Kidney Int 64:1141–1151

    PubMed  Google Scholar 

  43. Lepage R, Roy L, Brossard J-H, Rousseau L, Dorais C, Lazure C, D’Amour P (1998) A non-(1–84) circulating parathyroid hormone (PTH) fragment interferes significantly with intact PTH commercial assay measurements in uremic samples. Clin Chem 44:805–809

    CAS  PubMed  Google Scholar 

  44. Friedman PA (2004) PTH revisited. Kidney Int 66(Suppl 91):S13–S19

    Google Scholar 

  45. Rogers A, Saleh G, Hannon RA, Greenfield D, Eastell R (2002) Circulating estradiol and osteoprotegerin as determinants of bone turnover and bone density in postmenopausal women. J Clin Endocrinol Metab 87:4470–4475

    CAS  PubMed  Google Scholar 

  46. Coen G, Ballanti P, Balducci A, Calabria S, Fischer MS, Jankovic L, Manni M, Morosetti M, Moscaritolo E, Sardella D, Bonucci E (2002) Serum osteoprotegerin and renal osteodystrophy. Nephrol Dial Transplant 17:233–238

    CAS  PubMed  Google Scholar 

  47. Kazama JJ, Shigematsu T, Yano K, Tsuda E, Miura M, Iwasaki Y, Kawaguchi Y, Gejyo F, Kurokawa K, Fukagawa M (2002) Increased circulating levels of osteoclastogenesis inhibitory factor (osteoprotegerin) in patients with chronic renal failure. Am J Kidney Dis 39:525–532

    CAS  PubMed  Google Scholar 

  48. Kazama JJ (2004) Osteoprotegerin and bone mineral metabolism in renal failure. Curr Opin Nephrol Hypertens 13:411–415

    CAS  PubMed  Google Scholar 

  49. Risteli J, Risteli L (1999) Products of bone collagen metabolism. In: Seibel MJ, Robins SP, Bilezikian JP (Eds.) Dynamics of bone and cartilage metabolism: principles and clinical applications. Academic Press, London, pp 275–287

    Google Scholar 

  50. Bruder SP, Horowitz MC, Mosca JD, Haynesworth SE (1997) Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone 21:225–235

    CAS  PubMed  Google Scholar 

  51. Ivaska KK, Hentunen TA, Vääräniemi J, Ylipahkala H, Pettersson K, Väänänen HK (2004) Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro. J Biol Chem 279:18361–18369

    CAS  PubMed  Google Scholar 

  52. Charhon SA, Delmas PD, Malaval L, Chavassieux PM, Arlot M, Chapuy M-C, Meunier PJ (1986) Serum bone Gla-protein in renal osteodystrophy: comparison with bone histomorphometry. J Clin Endocrinol Metab 63:892–897

    CAS  PubMed  Google Scholar 

  53. Ureña P, Ferreira A, Kung VT, Morieux C, Simon P, Ang KS, Souberbielle JC, Segre GV, Drüeke TB, de Vernejoul MC (1995) Serum pyridinoline as a specific marker of collagen breakdown and bone metabolism in hemodialysis patients. J Bone Miner Res 10:932–939

    PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Cecilia Linder and Christina Linnér for excellent technical assistance. This study was supported by grants from the Swedish Research Council, the Swedish Society of Medicine, the County Council of Östergötland, the Magn. Bergvalls Foundation, the Åke Wiberg Foundation, the Sahlgrenska University Foundation, the R&D Council in Göteborg and Southern Bohuslän, the Swedish Association for Kidney Patients, and Första Majblommans Riksförbund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Magnusson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swolin-Eide, D., Hansson, S., Larsson, L. et al. The novel bone alkaline phosphatase B1x isoform in children with kidney disease. Pediatr Nephrol 21, 1723–1729 (2006). https://doi.org/10.1007/s00467-006-0231-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-006-0231-2

Keywords

Navigation