Skip to main content

Advertisement

Log in

Intracerebroventricular Delivery of Human Umbilical Cord Mesenchymal Stem Cells as a Promising Therapy for Repairing the Spinal Cord Injury Induced by Kainic Acid

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a common pathological condition that leads to permanent or temporal loss of motor and autonomic functions. Kainic acid (KA), an agonist of kainate receptors, a type of ionotropic glutamate receptor, is widely used to induce experimental neurodegeneration models of CNS. Mesenchymal Stem Cells (MSC) therapy applied at the injured nervous tissue have emerged as a promising therapeutic treatment. Here we used a validated SCI experimental model in which an intraparenchymal injection of KA into the C5 segment of rat spinal cord induced an excitotoxic lesion. Three days later, experimental animals were treated with an intracerebroventricular injection of human umbilical cord (hUC) MSC whereas control group only received saline solution. Sensory and motor skills as well as neuronal and glial reaction of both groups were recorded. Differences in motor behavior, neuronal counting and glial responses were observed between hUC-MSC-treated and untreated rats. According to the obtained results, we suggest that hUC-MSC therapy delivered into the fourth ventricle using the intracerebroventricular via can exert a neuroprotective or neurorestorative effect on KA-injected animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nicola, F., Marques, M. R., Odorcyk, F., Petenuzzo, L., Aristimunha, D., Vizuete, A., Sanches, E. F., Pereira, D. P., Maurmann, N., Gonçalves, C. A., Pranke, P., & Netto, C. A. (2019). Stem cells from human exfoliated deciduous teeth modulate early astrocyte response after spinal cord contusion. Molecular Neurobiology, 56(1), 748–760. https://doi.org/10.1007/s12035-018-1127-4.

    Article  CAS  PubMed  Google Scholar 

  2. Nejati-Koshki, K., Mortazavi, Y., Pilehvar-Soltanahmadi, Y., Sheoran, S., & Zarghami, N. (2017). An update on application of nanotechnology and stem cells in spinal cord injury regeneration. Biomedicine Pharmacotherapy, 90, 85–92. https://doi.org/10.1016/j.biopha.2017.03.035.

    Article  CAS  PubMed  Google Scholar 

  3. Papa, S., Vismara, I., Mariani, A., Barilani, M., Rimondo, S., De Paola, M., Panini, N., Erba, E., Mauri, E., Rossi, F., Forloni, G., Lazzari, L., & Veglianese, P. (2018). Mesenchymal stem cells encapsulated into biomimetic hydrogel scaffold gradually release CCL2 chemokine in situ preserving cytoarchitecture and promoting functional recovery in spinal cord injury. Journal of Controlled Release, 278, 49–56. https://doi.org/10.1016/j.jconrel.2018.03.034.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, S., Yi, M., Zhou, G., Pu, Y., Hu, Y., Han, M., & Jin, H. (2019). Abdominal aortic transplantation of bone marrow mesenchymal stem cells regulates the expression of ciliary neurotrophic factor and inflammatory cytokines in a rat model of spinal cord ischemia-reperfusion injury. Medical Science Monitor, 25, 1960–1969. https://doi.org/10.12659/MSM.912697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reigada, D., Navarro-Ruiz, R. M., Caballero-López, M. J., Del Águila, Á., Muñoz-Galdeano, T., Maza, R. M., & Nieto-Díaz, M. (2017). Diadenosine tetraphosphate (Ap4A) inhibits ATP-induced excitotoxicity: A neuroprotective strategy for traumatic spinal cord injury treatment. Purinergic Signalling, 13, 75–87. https://doi.org/10.1007/s11302-016-9541-4.

    Article  CAS  PubMed  Google Scholar 

  6. Zheng, H., Zhu, W., Zhao, H., Wang, X., Wang, W., & Li, Z. (2010). Kainic acid-activated microglia mediate increased excitability of rat hippocampal neurons in vitro and in vivo: Crucial role of interleukin-1beta. Neuroimmunomodulation, 17, 31–38. https://doi.org/10.1159/000243083.

    Article  CAS  PubMed  Google Scholar 

  7. Kuzhandaivel, A., Nistri, A., & Mladinic, M. (2010). Kainate-mediated excitotoxicity induces neuronal death in the rat spinal cord in vitro via a PARP-1 dependent cell death pathway (Parthanatos). Cellular and Molecular Neurobiology, 30, 1001–1012. https://doi.org/10.1007/s10571-010-9531-y.

    Article  CAS  PubMed  Google Scholar 

  8. Mazzone, L., Margaryan, G., Kuzhandaivel, A., Nasrabady, S. E., Mladinic, M., & Nistri, A. (2010). Kainate-induced delayed onset of excitotoxicity with functional loss unrelated to the extent of neuronal damage in the in vitro spinal cord. Neuroscience, 168, 451–462. https://doi.org/10.1016/j.neuroscience.2010.03.055.

    Article  CAS  PubMed  Google Scholar 

  9. Mitra, N. K., Goh, T. E. W., Krishnan, T. B., Nadarajah, V. D., Vasavaraj, A. K., & Soga, T. (2013). Effect of intra-cisternal application of kainic acid on the spinal cord and locomotor activity in rats. International Journal of Clinical and Experimental Pathology, 6, 1505–1515.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kjell, J., & Olson, L. (2016). Rat models of spinal cord injury: From pathology to potential therapies. Disease Model Mechanism, 9, 1125–1137. https://doi.org/10.1242/dmm.025833.

    Article  CAS  Google Scholar 

  11. Nishida, F., Zanuzzi, C. N., Martínez, A., Barbeito, C. G., & Portiansky, E. L. (2015). Functional and histopathological changes induced by intraparenchymal injection of kainic acid in the rat cervical spinal cord. Neurotoxicology, 49, 68–78. https://doi.org/10.1016/j.neuro.2015.05.006.

    Article  CAS  PubMed  Google Scholar 

  12. Nishida, F., Sisti, M. S., Zanuzzi, C. N., Barbeito, C. G., & Portiansky, E. L. (2017). Neurons of the rat cervical spinal cord express vimentin and neurofilament after intraparenchymal injection of kainic acid. Neuroscience Letters, 64, 103–110. https://doi.org/10.1016/j.neulet.2017.02.029.

    Article  CAS  Google Scholar 

  13. Zanuzzi, C. N., Nishida, F., Sisti, S., Barbeito, C. G., & Portiansky, E. L. (2019). Reactivity of microglia and astrocytes after an excitotoxic injury induced by kainic acid in the rat spinal cord. Tissue and Cell, 56, 31–40. https://doi.org/10.1016/j.tice.2018.11.007.

    Article  CAS  PubMed  Google Scholar 

  14. Forostyak, S., Jendelova, P., & Sykova, E. (2013). The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications. Biochimie, 95, 2257–2270. https://doi.org/10.1016/j.biochi.2013.08.004.

    Article  CAS  PubMed  Google Scholar 

  15. Dasari, V. R., Veeravalli, K. K., & Dinh, D. H. (2014). Mesenchymal stem cells in the treatment of spinal cord injuries: A review. World Journal Stem Cells, 6(2), 120–133. https://doi.org/10.4252/wjsc.v6.i2.120.

    Article  Google Scholar 

  16. Vismara, I., Papa, S., Rossi, F., Forloni, G., & Veglianese, P. (2017). Current options for cell therapy in spinal cord injury. Trends in Molecular Medicine, 23, 831–849. https://doi.org/10.1016/j.molmed.2017.07.005.

    Article  CAS  PubMed  Google Scholar 

  17. Cofano, F., Boido, M., Monticelli, M., Zenga, F., Ducati, A., Vercelli, A., & Garbossa, D. (2019). Mesenchymal stem cells for spinal cord injury: Current options, limitations, and future of cell therapy. International Journal Molecular Science, 20(11), pii: E2698. https://doi.org/10.3390/ijms20112698.

    Article  CAS  Google Scholar 

  18. Teng, Y. D. (2019). Functional multipotency of stem cells: Biological traits gleaned from neural progeny studies. Seminars in Cell and Developmental Biology, S1084-9521(18), 30059–30054. https://doi.org/10.1016/j.semcdb.2019.02.002.

    Article  Google Scholar 

  19. Boillée, S., Yamanaka, K., Lobsiger, C. S., Copeland, N. G., Jenkins, N. A., Kassiotis, G., Kollias, G., & Cleveland, D. W. (2006). Onset and progression in inherited ALS determined by motor neurons and microglia. Science, 312, 1389–1392. https://doi.org/10.1126/science.1123511.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, H. J., Lee, J. K., Lee, H., Carter, J. E., Chang, J. W., Oh, W., Yang, Y. S., Suh, J. G., Lee, B. H., Jin, H. K., & Bae, J. S. (2012). Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer’s disease mouse model through modulation of neuroinflammation. Neurobiology of Aging, 33, 588–602. https://doi.org/10.1016/j.neurobiolaging.2010.03.024.

    Article  CAS  PubMed  Google Scholar 

  21. Song, C. G., Zhang, Y. Z., Wu, H. N., Cao, X. L., Guo, C. J., Li, Y. Q., Zheng, M. H., & Han, H. (2018). Stem cells: A promising candidate to treat neurological disorders. Neural Regeneration Research, 13, 1294–1304. https://doi.org/10.4103/1673-5374.235085.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zappa Villar, M. F., Lehmann, M., Garcia, M. G., Mazzolini, G., Gustavo, R., Morel, G. T., Console, G. M., Podhajcer, O., Reggiani, P. C., & Goya, R. G. (2019). Mesenchymal stem cell therapy improves spatial memory and hippocampal structure in aging rats. Behavioural Brain Research, 374, 111887. https://doi.org/10.1016/j.bbr.2019.04.001.

    Article  PubMed  Google Scholar 

  23. Lehmann, M., Zappa-Villar, M. F., García, M. G., Mazzolini, G., Canatelli-Mallat, M., Morel, G. R., Reggiani, P. C., & Goya, R. G. (2019). Umbilical cord cell therapy improves spatial memory in aging rats. Stem Cell Reviews, 22, 612–617. https://doi.org/10.1007/s12015-019-09895-2 [Epub ahead of print].

    Article  Google Scholar 

  24. Bayo, J., Fiore, E., Aquino, J. B., Malvicini, M., Rizzo, M., Peixoto, E., Andriani, O., Alaniz, L., Piccioni, F., Bolontrade, M., Podhajcer, O., Garcia, M. G., & Mazzolini, G. (2014). Increased migration of human mesenchymal stromal cells by autocrine motility factor (AMF) resulted in enhanced recruitment towards hepatocellular carcinoma. PLoS One, 9(4), e95171. https://doi.org/10.1371/journal.pone.0095171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317. https://doi.org/10.1080/14653240600855905.

    Article  CAS  PubMed  Google Scholar 

  26. Aquino, J. B., Bolontrade, M. F., García, M. G., Podhajcer, O. L., & Mazzolini, G. (2010). Mesenchymal stem cells as therapeutic tools and gene carriers in liver fibrosis and hepatocellular carcinoma. Gene Therapy, 17, 692–708. https://doi.org/10.1038/gt.2010.10.

    Article  CAS  PubMed  Google Scholar 

  27. Nishida, F., Zanuzzi, C. N., Márquez, M., Barbeito, C. G., & Portiansky, E. L. (2014). La trepanación vertebral como un método alternativo para la inoculación intraparenquimatosa de diversas suspensiones dentro de la médula espinal. Analecta Veterinaria, 34, 11–17.

    Google Scholar 

  28. Paxinos, G., & Watson, C. (1998). The rat brain in stereotaxic coordinates (4th ed.). Academic: San Diego.

    Google Scholar 

  29. Milano, J., Oliveira, S. M., Rossato, M. F., Sauzem, P. D., Machado, P., Beck, P., Zanatta, N., Martins, M. A., Mello, C. F., Rubin, M. A., Ferreira, J., & Bonacorso, H. G. (2008). Antinociceptive effect of novel trihalomethyl-substituted pyrazoline methyl esters in formalin and hot-plate tests in mice. European Journal of Pharmacology, 581, 86–96. https://doi.org/10.1016/j.ejphar.2007.11.042.

    Article  CAS  PubMed  Google Scholar 

  30. Nishida, F., Morel, G. R., Hereñú, C. B., Schwerdt, J. I., Goya, R. G., & Portiansky, E. L. (2011). Restorative effect of intracerebroventricular Insulin-Like Growth Factor-I gene therapy on motor performance in aging rats. Neuroscience, 177, 195–206. https://doi.org/10.1016/j.neuroscience.2011.01.013.

    Article  CAS  PubMed  Google Scholar 

  31. Metz, G. A., & Whishaw, I. Q. (2002). Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: A new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. Journal of Neuroscience Methods, 115, 169–179.

    Article  PubMed  Google Scholar 

  32. Portiansky, E. L. (2018). Análisis Multidimensional de Imágenes Digitales (2a Ed.). La Plata: Universidad Nacional de La Plata. Formato digital PDF. ISBN:978-950-34-1713-3. http://sedici.unlp.edu.ar/handle/10915/70938

  33. Kean, T. J., Lin, P., Caplan, A. L., & Dennis, J. E. (2013). MSCs: Delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells International, 2013, 732742. https://doi.org/10.1155/2013/732742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang, P., Freeman, W. D., Edenfield, B. H., Brott, T. G., Meschia, J. F., & Zubair, A. C. (2019). Safety and efficacy of intraventricular delivery of bone marrow-derived mesenchymal stem cells in hemorrhagic stroke model. Scientific Reports, 9, 5674. https://doi.org/10.1038/s41598-019-42182-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gutova, M., Flores, L., Adhikarla, V., Tsaturyan, L., Tirughana, R., Aramburo, S., Metz, M., Gonzaga, J., Annala, A., Synold, T. W., Portnow, J., Rockne, R. C., & Aboody, K. S. (2019). Quantitative evaluation of intraventricular delivery of therapeutic neural stem cells to orthotopic glioma. Frontiers in Oncology, 9, 68. https://doi.org/10.3389/fonc.2019.00068.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chua, S. J., Bielecki, R., Yamanaka, N., Fehlings, M. G., Rogers, I. M., & Casper, R. F. (2010). The effect of umbilical cord blood cells on outcomes after experimental traumatic spinal cord injury. Spine, 35, 1520–1526. https://doi.org/10.1097/BRS.0b013e3181c3e963.

    Article  PubMed  Google Scholar 

  37. Kao, C. H., Chen, S. H., Chio, C. C., & Lin, M. T. (2008). Human umbilical cord blood-derived CD34 cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors. Shock, 29, 49–55. https://doi.org/10.1097/shk.0b013e31805cddce.

    Article  PubMed  Google Scholar 

  38. Ryan, J. M., Barry, F. P., Murphy, J. M., & Mahon, B. P. (2005). Mesenchymal stem cells avoid allogeneic rejection. Journal of Inflammation (London), 2, 8. https://doi.org/10.1186/1476-9255-2-8.

    Article  CAS  Google Scholar 

  39. Gaudet, A. D., & Fonken, L. K. (2018). Glial cells shape pathology and repair after spinal cord injury. Brain, Behavior, and Immunity, 73, 133–148. https://doi.org/10.1016/j.bbi.2018.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lukovic, D., Stojkovic, M., Moreno-Manzano, V., Jendelova, P., Sykova, E., Bhattacharya, S. S., & Erceg, S. (2015). Concise review: Reactive astrocytes and stem cells in spinal cord injury: Good guys or bad guys? Stem Cells, 33(4), 1036–1041. https://doi.org/10.1002/stem.

    Article  PubMed  Google Scholar 

  41. Krupa, P., Vackova, I., Ruzicka, J., Zaviskova, K., Dubisova, J., Koci, Z., Turnovcova, K., Urdzikova, L. M., Kubinova, S., Rehak, S., & Jendelova, P. (2018). The effect of human mesenchymal stem cells derived from wharton’s jelly in spinal cord injury treatment is dose-dependent and can be facilitated by repeated application. International Journal of Molecular Sciences, 19(5), E1503. https://doi.org/10.3390/ijms19051503.

    Article  CAS  PubMed  Google Scholar 

  42. Chen, C., Chen, F., Yao, C., Shu, S., Feng, J., Hu, X., Hai, Q., Yao, S., & Chen, X. (2016). Intrathecal injection of human umbilical cord-derived mesenchymal stem cells ameliorates neuropathic pain in rat. Neurochemical Research, 41, 3250–3260. https://doi.org/10.1007/s11064-016-2051-5.

    Article  CAS  PubMed  Google Scholar 

  43. Salgado, A. J., Fraga, J. S., Mesquita, A. R., Neves, N. M., Reis, R. L., & Sousa, N. (2010). Role of human umbilical cord mesenchymal progenitors conditioned media in neuronal/glial cell densities, viability, and proliferation. Stem Cells and Development, 19, 1067–1074. https://doi.org/10.1089/scd.2009.0279.

    Article  CAS  PubMed  Google Scholar 

  44. Abbaszadeh, H. A., Tiraihi, T., Noori-Zadeh, A., Delshad, A. R., Sadeghizade, M., & Taheri, T. (2015). Human ciliary neurotrophic factor-overexpressing stable bone marrow stromal cells in the treatment of a rat model of traumatic spinal cord injury. Cytotherapy, 17, 912–921. https://doi.org/10.1016/j.jcyt.2015.03.689.

    Article  CAS  PubMed  Google Scholar 

  45. Hofstetter, C. P., Schwarz, E. J., Hess, D., Widenfalk, J., El Manira, A., Prockop, D. J., & Olson, L. (2002). Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proceedings of the National Academy of Sciences of the United States of America, 99, 2199–2204. https://doi.org/10.1073/pnas.042678299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohta, M., Suzuki, Y., Noda, T., Ejiri, Y., Dezawa, M., Kataoka, K., Chou, H., Ishikawa, N., Matsumoto, N., Iwashita, Y., Mizuta, E., Kuno, S., & Ide, C. (2004). Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Experimental Neurology, 187, 266–278. https://doi.org/10.1016/j.expneurol.2004.01.021.

    Article  CAS  PubMed  Google Scholar 

  47. Falkner, S., Grade, S., Dimou, L., Conzelmann, K. K., Bonhoeffer, T., Götz, M., Hübener, M., Wuttke, T. V., Markopoulos, F., Padmanabhan, H., & Wheeler, A. P. (2016). Transplanted embryonic neurons integrate into adult neocortical circuits. Nature, 539, 248–253. https://doi.org/10.1038/nature20113.

    Article  CAS  PubMed  Google Scholar 

  48. Wuttke, T. V., Markopoulos, F., Padmanabhan, H., Wheeler, A. P., Murthy, V. N., & Macklis, J. D. (2018). Developmentally primed cortical neurons maintain fidelity of differentiation and establish appropriate functional connectivity after transplantation. Nature Neuroscience, 21, 517–529. https://doi.org/10.1038/s41593-018-0098-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abrams, M. B., Dominguez, C., Pernold, K., Reger, R., Wiesenfeld-Hallin, Z., Olson, L., & Prockop, D. (2009). Multipotent mesenchymal stromal cells attenuate chronic inflammation and injury-induced sensitivity to mechanical stimuli in experimental spinal cord injury. Restorative Neurology and Neuroscience, 27, 307–321. https://doi.org/10.3233/RNN-2009-0480.

    Article  PubMed  Google Scholar 

  50. Kang, S. K., Shin, M. J., Jung, J. S., Kim, Y. G., & Kim, C. H. (2006). Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells and Development, 15, 583–594. https://doi.org/10.1089/scd.2006.15.583.

    Article  CAS  PubMed  Google Scholar 

  51. Lin, W., Xu, L., Zwingenberger, S., Gibon, E., Goodman, S. B., & Li, G. (2017). Mesenchymal stem cells homing to improve bone healing. Journal of Orthopaedic Translation, 9, 19–27. https://doi.org/10.1016/j.jot.2017.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Drommelschmidt, K., Serdar, M., Bendix, I., Herz, J., Bertling, F., Prager, S., Keller, M., Ludwig, A.-K., Duhan, V., Radtke, S., de Miroschedji, K., Horn, P. A., van de Looji, Y., Giebel, B., & Felderhoff-Müser, U. (2017). Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain, Behavior and Immunity, 60, 220–232. https://doi.org/10.1016/j.bbi.2016.11.011.

    Article  CAS  Google Scholar 

  53. Kwon, M. S., Noh, M. Y., Oh, K. W., Cho, K. A., Kang, B. Y., Kim, K. S., Kim, Y. S., & Kim, S. H. (2014). The immunomodulatory effects of human mesenchymal stem cells on peripheral blood mononuclear cells in ALS patients. The Journal of Neurochemistry, 131, 206–218. https://doi.org/10.1111/jnc.12814.

    Article  CAS  PubMed  Google Scholar 

  54. Sheikh, A. M., Nagai, A., Wakabayashi, K., Narantuya, D., Kobayashi, S., Yamaguchi, S., & Kim, S. U. (2011). Mesenchymal stem cell transplantation modulates neuroinflammation in focal cerebral ischemia: Contribution of fractalkine and IL-5. Neurobiology of Disease, 41, 717–724. https://doi.org/10.1016/j.nbd.2010.12.009.

    Article  CAS  PubMed  Google Scholar 

  55. Yan, K., Zhang, R., Sun, C., Chen, L., Li, P., Liu, Y., Peng, L., Sun, H., Qin, K., Chen, F., Lv, B., Du, M., Zou, Y., Cai, Y., Qin, L., Tang, Y., & Jiang, X. (2013). Bone marrow-derived mesenchymal stem cells maintain the resting phenotype of microglia and inhibit microglial activation. PLoS One, 8, e84116. https://doi.org/10.1371/journal.pone.0084116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, L., Pei, S., Han, L., Guo, B., Li, Y., Duan, R., Yao, Y., Xue, B., Chen, X., & Jia, Y. (2018). Mesenchymal stem cell-derived exosomes reduce A1 astrocytes via downregulation of phosphorylated NFκB P65 subunit in spinal cord injury. Cellular Physiology and Biochemistry, 50(4), 1535–1559. https://doi.org/10.1159/000494652.

    Article  CAS  PubMed  Google Scholar 

  57. Kim, C., Kim, H. J., Lee, H., Lee, H., Lee, S. J., Lee, S. T., Yang, S. R., & Chung, C. K. (2019). Mesenchymal stem cell transplantation promotes functional recovery through MMP2/STAT3 related astrogliosis after spinal cord injury. International Journal of Stem Cells, 12(2), 331–339. https://doi.org/10.15283/ijsc18133.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zamanian, J. L., Xu, L., Foo, L. C., Nouri, N., Zhou, L., Giffard, R. G., & Barres, B. A. (2012). Genomic analysis of reactive astrogliosis. Journal of Neuroscience, 32, 6391–6410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012.

    Article  CAS  PubMed  Google Scholar 

  59. Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Münch, A. E., Chung, W. S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., Stevens, B., & Barres, B. A. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 541(7638), 481–487. https://doi.org/10.1038/nature21029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, W., Wang, Y., Gong, F., Rong, Y., Luo, Y., Tang, P., Zhou, Z., Zhou, Z., Xu, T., Jiang, T., Yang, S., Yin, G., Chen, J., Fan, J., & Cai, W. (2019). Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of a1 neurotoxic reactive astrocytes. Journal of Neurotrauma, 36(3), 469–484. https://doi.org/10.1089/neu.2018.5835.

    Article  PubMed  Google Scholar 

  61. Zappa Villar, M. F., López Hanotte, J., Pardo, J., Morel, G. R., Mazzolini, G., García, M. G., & Reggiani, P. C. (2019). Mesenchymal stem cells therapy improved the streptozotocin-induced behavioral and hippocampal impairment in rats. Molecular Neurobiology, 1–16. https://doi.org/10.1007/s12035-019-01729-z [Epub ahead of print].

  62. Wilhelmsson, U., Faiz, M., de Pablo, Y., Sjöqvist, M., Andersson, D., Widestrand, A., Potokar, M., Stenovec, M., Smith, P. L., Shinjyo, N., Pekny, T., Zorec, R., Ståhlberg, A., Pekna, M., Sahlgren, C., & Pekny, M. (2012). Astrocytes negatively regulate neurogenesis through the Jagged 1-mediated Notch pathway. Stem Cells, 30, 2320–2329. https://doi.org/10.1002/stem.1196.

    Article  CAS  PubMed  Google Scholar 

  63. Shi, W., Huang, C. J., Xu, X. D., Jin, G. H., Huang, R. Q., Huang, J. F., Chen, Y. N., Ju, S. Q., Wang, Y., Shi, Y. W., Qin, J. B., Zhang, Y. Q., Liu, Q. Q., Wang, X. B., Zhang, X. H., & Chen, J. (2016). Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury. Acta Biomaterialia, 45, 247–261. https://doi.org/10.1016/j.actbio.2016.09.001.

    Article  CAS  PubMed  Google Scholar 

  64. Huang, J. H., Yin, X. M., Xu, Y., Xu, C. C., Lin, X., Ye, F. B., Cao, Y., & Lin, F. Y. (2017). Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. Journal of Neurotrauma, 34(24), 3388–3396. https://doi.org/10.1089/neu.2017.5063.

    Article  PubMed  Google Scholar 

  65. Wrathall, J. R., Teng, Y. D., & Marriott, R. (1997). Delayed antagonism of AMPA/kainate receptors reduces long-term functional deficits resulting from spinal cord trauma. Experimental Neurology, 145(2 Pt 1), 565–573.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Agency for Promotion of Science and Technology (ANPCyT) (grant PICT 2015-2087 to FN and PICT 2015-1998 to PCR) and by the National University of La Plata (grant V270 to ELP). The authors thank Dr. G. Mazzolini and Dr. M.G. García (Universidad Austral, CONICET) for kindly providing the hUC-MSC. The expert handling of animals by Mr. H. Enrique is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina N. Zanuzzi.

Ethics declarations

Conflict of Interest

The authors do not have any financial conflict of interests to disclose.

Research Involving Animals

All experiments with animals were performed according to the recommendations of the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was also approved by the School of Veterinary Sciences, National University of Plata Institutional Committee for Care and Use of Laboratory Animals (CICUAL), code n° 49-8-15 P.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishida, F., Zappa Villar, M.F., Zanuzzi, C.N. et al. Intracerebroventricular Delivery of Human Umbilical Cord Mesenchymal Stem Cells as a Promising Therapy for Repairing the Spinal Cord Injury Induced by Kainic Acid. Stem Cell Rev and Rep 16, 167–180 (2020). https://doi.org/10.1007/s12015-019-09934-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09934-y

Keywords

Navigation