Skip to main content

Advertisement

Log in

Properties of a Non-canonical Complex Formed Between a Tepary Bean (Phaseolus acutifolius) Protease Inhibitor and α-Chymotrypsin

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Protease inhibitors are crucial for the control of proteolytic activity in different physiological processes. However, some inhibitors do not show canonical enzyme recognition of the enzyme under certain conditions. In this work, we present evidence that indicates the formation of an active complex between the protease bovine α-chymotrypsin and the Tepary bean protease inhibitor (TBPI). The composition of the active chymotrypsin-TBPI complex (AC) was confirmed by three different methods: size-exclusion chromatography, polyacrylamide gel electrophoresis (PAGE), and mass spectrometry. The kinetic parameters for the AC were similar to those of the enzyme alone, indicating that TBPI binding does not produce any large changes in chymotrypsin. The molecular model proposed here postulates that TBPI binds outside the active cleft of the protease, but near enough to hinder the binding of high molecular weight substrates into the active site. This model was experimentally supported by the inhibitory effect on casein as a substrate, and the unaltered protease activity when a small synthetic substrate was used. We also found that the formation of this complex provided the enzyme with extra stability in denaturing conditions or in the presence of a reducing agent. The chymotrypsin-TBPI complex exhibited higher stability, indicating that autolysis can be partially prevented. When the enzyme was first inactivated followed by the addition of the inhibitor, the activity of the protease was restored. We described a possible mechanism where a plant protease inhibitor binds outside the active site of the enzyme while increasing its stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AC:

Active chymotrypsin-TBPI complex

appMM:

Apparent molecular mass

AU:

Proteolytic activity units

BApNA:

N-benzoyl-arginine-p-nitroanilide

BBI:

Bowman-Birk type inhibitor

BSA:

Bovine serum albumin

Da:

Daltons

DMSO:

Dimethyl sulfoxide

DTT:

Dithiothreitol

E:

Enzyme/α-chymotrypsin

EI:

Enzyme-Inhibitor/chymotrypsin-TBPI

IC:

Inactive chymotrypsin-TBPI complex

IU:

Inhibition activity units

Km:

Michaelis–Menten constant

M:

Molar

MALDI-TOF-TOF:

Matrix assisted laser desorption ionization time-of-flight

MMP:

Matrix metalloproteinase

MS/MS:

Tandem mass spectrometry

PAGE:

Polyacrylamide gel electrophoresis

PI:

Protease inhibitor

PI’s:

Protease inhibitors

SAAFpNA:

N-Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide

SDS:

Sodium dodecyl sulfate

SDS-PAGE:

Polyacrylamide gel electrophoresis with sodium dodecyl sulfate

TBPI:

Tepary bean protease inhibitor

TEMED:

1,2-bis(dimethylamine)-ethane

Tm:

Melting temperature

Vmax:

Maximum velocity

References

  1. Habib H, Fazili MK (2007) Plant protease inhibitors: a defense strategy in plants. Biotechnol Mol Biol Rev 2:68–85

    Google Scholar 

  2. Page MJ, Di Cera E (2008) Serine peptidases: classification, structure and function. Cell Mol Life Sci 65:1220–1236

    Article  CAS  PubMed  Google Scholar 

  3. Di Cera E (2009) Serine proteases. IUBMB Life 61:510–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khan AR, James MNG (1998) Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci 7:815–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krowarsch D, Cierpicki T, Jelen F, Otlewski J (2003) Canonical protein inhibitors of serine proteases. Cell Mol Life Sci 60:2427–2444

    Article  CAS  PubMed  Google Scholar 

  6. Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ (2008) MEROPS: the peptidase database. Nucleic Acids Res 36:320–325

    Article  CAS  Google Scholar 

  7. Ohlsson K, Skude G (1976) Demonstration and semiquantitative determination of complexes between various proteases and human α2- macroglobulin. Clin Chim Acta 66:1–7

    Article  CAS  PubMed  Google Scholar 

  8. Gliemann J, Sottrup-Jensen L (1987) Rat plasma α1-inhibitor3 binds to receptors for α2-macroglobulin. FEBS Lett 221:55–60

    Article  CAS  PubMed  Google Scholar 

  9. Gauthier F, Genell S, Mouray H, Ohlsson K (1979) Interactions in vitro and in vivo between rat serum protease inhibitors and anodal and cathodal rat trypsin and chymotrypsin. Biochim Biophys Acta 566:200–210

    Article  CAS  PubMed  Google Scholar 

  10. Esnard F, Gutman N, El Moujahed A, Gauthier F (1985) Rat plasma α1- inhibitor3: a member of the α-macroglobulin family. FEBS Lett 182:125–129

    Article  CAS  PubMed  Google Scholar 

  11. Qiu WQ, Borth W, Ye Z, Haass C, Teplow DB, Selkoe DJ (1995) Degradation of amyloid-protein by a serine protease α-macroglobulin complex. J Biol Chem 271:8443–8451

    Article  Google Scholar 

  12. Tchetverikov I, Lard LR, DeGroot J, Verzijl N, TeKoppele JM, Breedveld FC, Huizinga TWJ, Hanemaaijer R (2003) Matrix metalloproteinases-3, -8, -9 as markers of disease activity and joint damage progression in early rheumatoid arthritis. Ann Rheum Dis 62:1094–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ray S, Lukyanov P, Ochieng J (2003) Members of the cystatin superfamily interact with MMP-9 and protect it from autolytic degradation without affecting its gelatinolytic activities. Biochim Biophys Acta 1652:91–102

    Article  CAS  PubMed  Google Scholar 

  14. Mukherjee AK, Sumita D, Bhargab K, Deepak KJ, Pritam D, Stephen PM (2016) Structural and functional characterization of complex formation between two Kunitz-type serine protease inhibitors from Russell’s Viper venom. Biochimie 138:128–129

    Google Scholar 

  15. Guilloteau M, Laloi M, Michaux S, Bucheli P, McCarthy J (2005) Identification and characterization of the major aspartic proteinase activity in Theobroma cacao seeds. J Sci Food Agric 85:549–562

    Article  CAS  Google Scholar 

  16. Castro-Guillén JL (2012) Caracterización parcial de serinpeptidasas de Prostephanus truncates. Dissertation CINVESTAV, Unidad Irapuato, México

  17. Molnár T, Vörös J, Szeder B, Takáts K, Kardos J, Katona G, Gráf L (2013) Comparison of complexes formed by a crustacean and a vertebrate trypsin with bovine pancreatic trypsin inhibitor—the key to achieving extreme stability? FEBS Lett 280:5750–5763

    Article  CAS  Google Scholar 

  18. Campos JE, Martinez-Gallardo N, Mendiola-Olaya E, Blanco-Labra A (1997) Purification and partial characterization of a proteinase inhibitor from Tepary bean (Phaseolus acutifolius seeds). J Food Biochem 21:203–218

    Article  CAS  Google Scholar 

  19. Campos JE, Whitaker RJ, Yip TT, Hutchens WT, Blanco-Labra A (2004) Unusual structural characteristics and complete amino acid sequence of a protease inhibitor from Phaseolus acutifolius seeds. Plant Physiol Biochem 42:209–214

    Article  CAS  PubMed  Google Scholar 

  20. Schägger H, Von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  PubMed  Google Scholar 

  21. Erlanger B, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  CAS  PubMed  Google Scholar 

  22. Fernández-Resa P, Mira E, Quesada AR (1995) Enhanced detection of casein zymography of matrix metalloproteinase. Anal Biochem 224:434–435

    Article  PubMed  Google Scholar 

  23. Vinokurov KS, Oppert B, Elpidina EN (2005) An overlay technique for post-electrophoretic analysis of proteinase spectra in complex mixtures using p-nitroanilide substrates. Anal Biochem 337:164–166

    Article  CAS  PubMed  Google Scholar 

  24. Ohlsson BG, Weström BR, Karlsson BW (1986) Enzyme-blotting: a method for localizing proteinases and their zymogens using para-nitroanilide substrates after agarose gel electrophoresis and transfer to nitrocellulose. Anal Biochem 152:239–244

    Article  CAS  PubMed  Google Scholar 

  25. Hellman U, Wernstedt C, Gonez J, Heldin CH (1995) Improvement of an “in-gel” digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal Biochem 224:451–455

    Article  CAS  PubMed  Google Scholar 

  26. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  PubMed  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  28. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(W1):W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang J, Liang Y, Zhang Y (2011) Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. Structure 19(12):1784–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Vajda S (2017) The ClusPro web server for protein–protein docking. Nat Protoc 12(2):255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huynh K, Partch CL (2015) Analysis of protein stability and ligand interactions by thermal shift assay. Curr Protoc Protein Sci 29:21–34

    Google Scholar 

  32. Chen P, Rose J, Love R, Wei CH, Wang BC (1992) Reactive sites of an anticarcinogenic Bowman-Birk proteinase inhibitor are similar to other trypsin inhibitors. J Biol Chem 267(3):1990–1994

    CAS  PubMed  Google Scholar 

  33. Kumar P, Rao AA, Hariharaputran S, Chandra N, Gowda LR (2004) Molecular Mechanism of Dimerization of Bowman-Birk Inhibitors pivotal role of asp76 in the dimerzation. J Biol Chem 279(29):30425–30432

    Article  CAS  PubMed  Google Scholar 

  34. Silva LP, Azevedo RB, Morais PC, Ventura MM, Freitas SM (2005) Oligomerization states of Bowman-Birk inhibitor by atomic force microscopy and computational approaches. Proteins 61(3):642–648

    Article  CAS  PubMed  Google Scholar 

  35. Rao KN, Suresh CG (2007) Bowman-Birk protease inhibitor from the seeds of Vigna unguiculata forms a highly stable dimeric structure. Biochem Biophys Acta 1774(10):1264–1273

    CAS  PubMed  Google Scholar 

  36. Fucikova J, Kasikova L, Truxova I, Laco J, Skapa P, Ryska A, Spisek R (2018) Relevance of the chaperone-like protein calreticulin for the biological behavior and clinical outcome of cancer. Immunol Lett 193:25–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank CONACYT grant 182760ABL, and fellowships of R Pliego-Arreaga, O Roldán-Padrón and M Dagio-Hernández. To Alicia Chagolla for her efficient assistance with mass spectrometry. Thanks to Dr. Jorge A. Torres-Castillo, and also thanks to Dr. Collen Beard and Carolyn Smith of Peace Corps Response for their useful advice when reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Blanco-Labra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pliego-Arreaga, R., Roldán-Padrón, O., Castro-Guillén, J.L. et al. Properties of a Non-canonical Complex Formed Between a Tepary Bean (Phaseolus acutifolius) Protease Inhibitor and α-Chymotrypsin. Protein J 38, 435–446 (2019). https://doi.org/10.1007/s10930-019-09863-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09863-2

Keywords

Navigation