Skip to main content

Advertisement

Log in

Structure–Function Relationships of LDL Receptor Missense Mutations Using Homology Modeling

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Mutations in the low-density lipoprotein receptor (LDLR), which cause familial hypercholesterolemia (FH), present a variable clinical FH phenotype. To date, over 1600 FH-causing mutations have been found worldwide. The aim of this study was to investigate the structure–function relationships of LDLR mutations by using homology modeling. Structural analysis of 36 missense mutations of known receptor activity (33 severe, 1 mild, and 2 non-pathogenic phenotypes) using sequence comparison and homology modeling was performed. Severe phenotypes had less than 2% to 32% of residual LDLR activity. Mild phenotypes had 76–92% of residual LDLR activity. Finally, non-pathogenic phenotypes had normal residual LDLR activity. Sequence comparisons showed that most of the severe phenotypes were located within the fully conserved residues of LDLR, while most of the mild and non-pathogenic phenotypes were located within the poorly conserved residues. Homology modeling demonstrated several phenomena for severe phenotypes: disruption of disulfide bond formation, disturbance of the calcium binding sites, and perturbation of LDLR hydrophobic conserved packing. In contrast, mild and non-pathogenic phenotypes did not disturb the critical region of LDLR. In addition, the root mean square deviation (RMSD) values of severe phenotype tended to be higher than the mild and non-pathogenic phenotypes, and the mean of solvent accessible surface area (ASA) of the residues in wild type structure for the severe phenotype was lower than mild and non-pathogenic phenotypes. These findings provide a better understanding in the structure–function relationships of LDLR mutations and may be useful in predicting FH severity based on future genotyping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ASA:

Solvent accessible surface area

CHD:

Coronary heart disease

EGF:

Epidermal growth factor

EGFP:

Epidermal growth factor precursor

FH:

Familial hypercholesterolemia

IMT:

Intima-media thickness

LA:

Ligand repeated

LBD:

Ligand-binding domain

LDL-C:

LDL cholesterol

LDLR:

Low density lipoprotein receptor

OLS:

O-linked sugar domain

PDB:

Protein data bank

RMSD:

Root mean square deviation

References

  1. Jeon H, Blacklow SC (2005) Structure and physiology function of the low-density lipoprotein receptor. Annu Rev Biochem 74:535–562

    Article  CAS  PubMed  Google Scholar 

  2. Zou P, Ting AY (2011) Imaging LDL receptor oligomerization during endocytosis using a co-internalization assay. ACS Chem Biol 6(4):308–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goldstein JL, Hobbs HH, Brown MS (2001) Familial hypercholesterolemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited Disease, 8th edn. McGraw Hill, New York

    Google Scholar 

  4. Francke U, Brown MS, Goldstein JL (1984) Assignment of human gene for the low density lipoprotein receptor to chromosome 19: synteny of a receptor, a ligand and a genetic disease. Proc Natl Acad Sci USA 81:2826–2830

    Article  CAS  PubMed  Google Scholar 

  5. Cuchel M, Bruckert E, Ginsberg HN, Raal FJ, Santos RD, Hegele RA, Kuivenhoven JA, Nordestgaard BG, Descamps OS, Steinhagen-Thiessen E, Tybjaerg-Hansen A, Watts GF, Averna M, Boileau C, Boren J, Catapano AL, Defesche JC, Hovingh GK, Humphries SE, Kovanen PT, Masana L, Pajukanta P, Parhofer KG, Ray KK, Stalenhoef AF, Stroes E, Taskinen MR, Wiegman A, Wiklund O, Chapman MJ (2014) European Atherosclerosis Society Consensus Panel on Familial H: homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J 35:2146–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. British Heart Foundation [Internet database] cited on July 1, 2018. http://www.ucl.ac.uk/ldlr/Current/index.php?select_db=LDLR

  7. Hobbs HH, Brown MS, Goldstein JL (1992) Molecular genetics of the LDL receptor gene in familial hypercholeterolemia. Hum Mutat 1:445–466

    Article  CAS  PubMed  Google Scholar 

  8. Jansen AC, van Wissen S, Defesche JC, Kastelein JJ (2002) Phenotypic variability in familial hypercholesterolaemia: an update. Curr Opin Lipidol 13:165–171

    Article  CAS  PubMed  Google Scholar 

  9. Pimstone SN, Sun XM, du Souich C, Frohlich JJ, Hayden MR, Soutar AK (1998) Phenotypic variation in heterozygous familial Hypercholesterolemia: a comparison of Chinese patients with the same or similar mutations in the LDL receptor gene in China or Canada. Arterioscler Thromb Vasc Biol 18:309–315

    Article  CAS  PubMed  Google Scholar 

  10. Bertolini S, Cassanelli S, Garuti R, Ghisellini M, Simone ML, Rolleri M, Masturzo P, Calandra S (1999) Analysis of LDL receptor gene mutations in Italian patients with homozygous familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 19:408–418

    Article  CAS  PubMed  Google Scholar 

  11. Gudnason V, Day IN, Humphries SE (1994) Effect on plasma lipid levels of different classes of mutations in the low-density lipoprotein receptor gene in patients with familial hypercholesterolemia. Arterioscler Thromb 14:1717–1722

    Article  CAS  PubMed  Google Scholar 

  12. Bertolini S, Cantafora A, Averna M, Cortese C, Motti C, Martini S, Pes G, Postiglione A, Stefanutti C, Blotta I, Pisciotta L, Rolleri M, Langheim S, Ghisellini M, Rabbone I, Calandra S (2000) Clinical expression of familial hypercholesterolemia in clusters of mutations of the LDL Receptor gene that cause a receptor-defective or receptor-negative phenotype. Arterioscler Thromb Vasc Biol 20:E41–E52

    Article  CAS  PubMed  Google Scholar 

  13. Descamps OS, Gilbeau JP, Leysen X, Van Leuven F, Heller FR (2001) Impact of genetic defects on atherosclerosis in patients suspected of familial hypercholesterolaemia. Eur J Clin Invest 31:958–965

    Article  CAS  PubMed  Google Scholar 

  14. Dedoussis GV, Skoumas J, Pitsavos C, Choumerianou DM, Genschel J, Schmidt H, Stefanadis C (2004) FH clinical phenotype in Greek patients with LDL-R defective vs. negative mutations. Eur J Clin Investig 34:402–409

    Article  CAS  Google Scholar 

  15. Sun XM, Patel DD, Knight BL, Soutar AK (1998) Influence of genotype at the low density lipoprotein (LDL) receptor gene locus on the clinical phenotype and response to lipid-lowering drug therapy in heterozygous familial hypercholesterolaemia. The Familial Hypercholesterolaemia Regression Study Group. Atherosclerosis 136:175–185

    Article  CAS  PubMed  Google Scholar 

  16. Heath KE, Gudnason V, Humphries SE, Seed M (1999) The type of mutation in the low density lipoprotein receptor gene influences the cholesterol-lowering response of the HMG-CoA reductase inhibitor simvastatin in patients with heterozygous familial hypercholesterolaemia. Atherosclerosis 143:41–54

    Article  CAS  PubMed  Google Scholar 

  17. Brorholt-Petersen JU, Jensen HK, Raungaard B, Gregersen N, Faergeman O (2001) LDL-receptor gene mutations and the hypocholesterolemic response to statin therapy. Clin Genet 59:397–405

    Article  CAS  PubMed  Google Scholar 

  18. Koeijvoets KC, Wiegman A, Rodenburg J, Defesche JC, Kastelein JJ, Sijbrands EJ (2005) Effect of low-density lipoprotein receptor mutation on lipoproteins and cardiovascular disease risk: a parent-offspring study. Atherosclerosis 180:93–99

    Article  CAS  PubMed  Google Scholar 

  19. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    Article  CAS  PubMed  Google Scholar 

  21. Valdar WS (2002) Scoring residue conservation. Proteins 48:227–241

    Article  CAS  PubMed  Google Scholar 

  22. Vriend G (1990) WHATIF: a molecular modeling and drug design program. J Mol Graph 8:52–56

    Article  CAS  PubMed  Google Scholar 

  23. Luethy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three- dimensional profiles. Nature 356:83–85

    Article  CAS  Google Scholar 

  24. Lovell SC, Davis IW, Arendall WB, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50:437–450

    Article  CAS  Google Scholar 

  25. Colovos VC, Yeates TO (1993) Verification of protein structures: patterns of non-bonded atomic interactions. Protein Sci 2:1511–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  27. Maiti R, Domselaar GHV, Zhang H, Wishart DS (2004) SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res 32:590–594

    Article  CAS  Google Scholar 

  28. Gent J, Braakman I (2004) Low-density lipoprotein receptor structure and folding. Cell Mol Life Sci 61:2461–2470

    Article  CAS  PubMed  Google Scholar 

  29. Jeon H, Meng W, Takagi J, Eck MJ, Springer TA, Blacklow SC (2001) Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair. Nat Struct Biol 8:499–504

    Article  CAS  PubMed  Google Scholar 

  30. Huang JT, Wang MT (2002) Secondary structural wobble: the limits of protein prediction accuracy. Biochem Biophys Res Commun 294:621–625

    Article  CAS  PubMed  Google Scholar 

  31. Imai K, Mitaku S (2005) Mechanisms of secondary structure breakers in soluble proteins. Biophysics 1:55–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. MacArthur MW, Thornton JM (1991) Influence of proline residues on protein conformation. J Mol Biol 218:397–412

    Article  CAS  PubMed  Google Scholar 

  33. Lyu PC, Sherman JC, Chen A, Kallenbach NR (1991) Alpha-helix stabilization by natural and unnatural amino acids with alkyl side chains. Proc Natl Acad Sci USA 88(12):5317–5320

    Article  CAS  PubMed  Google Scholar 

  34. Miyakea Y, Yamamurab T, Sakaic N, Miyataa T, Kokubod Y, Yamamotoa A (2009) Update of Japanese common LDLR gene mutations and their phenotypes: mild type mutation L547V might predominate in the Japanese population. Atherosclerosis 203:153–160

    Article  CAS  Google Scholar 

  35. Klee EW, Zimmermann MT (2019) Molecular modeling of LDLR aids interpretation of genomic variants. J Mol Med. https://doi.org/10.1007/s00109-019-01755-3

    Article  PubMed  PubMed Central  Google Scholar 

  36. Guo J, Gao Y, Li X, He Y, Zheng X, Bi J, Hou L, Sa Y, Zhang M, Yin H, Jiang L (2019) Systematic prediction of familial hypercholesterolemia caused by low-density lipoprotein receptor missense mutations. Atherosclerosis 281:1–8

    Article  CAS  PubMed  Google Scholar 

  37. Jeenduang N, Promptmas C, Pongrapeeporn KU, Porntadavity S (2008) Molecular modeling of D151Y and M391T mutations in the LDL receptor. Biochem Biophys Res Commun 377:355–360

    Article  CAS  PubMed  Google Scholar 

  38. Cuesta-Lopez S, Falo F, Sancho J (2007) Computational diagnosis of protein conformational diseases: short molecular dynamics simulations reveal a fast unfolding of r-LDL mutants that cause familial hypercholesterolemia. Proteins 66:87–95

    Article  CAS  PubMed  Google Scholar 

  39. Khan JM, Ranganathan S (2009) A multi-species comparative structural bioinformatics analysis of inherited mutations in α-D-Mannosidase reveals strong genotype-phenotype correlation. BMC Genom 10:S3–S33

    Article  CAS  Google Scholar 

  40. Manning JR, Bailey MA, Soares DC, Dunbar DR, Mullins JJ (2010) In silico structure-function analysis of pathological variation in the HSD11B2 gene sequence. Physiol Genom 42(3):319–330

    Article  CAS  Google Scholar 

  41. Pey AL, Desviat LR, Gámez A, Ugarte M, Pérez B (2003) Phenylketonuria: genotype-phenotype correlations based on expression analysis of structural and functional mutations in PAH. Hum Mutat 21(4):370–378

    Article  CAS  PubMed  Google Scholar 

  42. Cheng YS, Tang TK, Hwang M (1999) Amino acid conservation and clinical severity of human glucose-6-phosphate dehydrogenase mutations. J Biomed Sci 6(2):106–114

    Article  CAS  PubMed  Google Scholar 

  43. Ferdinandusse S, Ylianttila MS, Gloerich J, Koski MK, Oostheim W, Waterham HR, Hiltunen JK, Wanders RJ, Glumoff T (2006) Mutational spectrum of D-bifunctional protein deficiency and structure-based genotype-phenotype analysis. Am J Hum Genet 78(1):112–124

    Article  CAS  PubMed  Google Scholar 

  44. Tinto N, Zagari A, Capuano M, Simone AD, Capobianco V, Daniele G, Giugliano M, Spadaro R, Franzese A, Lucia Sacchetti L (2008) Glucokinase gene mutations: structural and genotype-phenotype analyses in MODY children from South Italy. PLoS ONE 3(4):e1870. https://doi.org/10.1371/journal.pone.0001870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saito S, Ohno K, Sugawara K, Sakuraba H (2009) Structural and clinical implications of amino acid substitutions in N-acetylgalactosamine-4-sulfatase: insight into mucopolysaccharidosis type VI. Mol Genet Metab 93(4):419–425

    Article  CAS  Google Scholar 

  46. Sukegawa K, Nakamura H, Kato Z, Tomatsu S, Montaño AM, Fukao T, Toietta G, Tortora P, Orii T, Kondo N (2000) Biochemical and structural analysis of missense mutations in N-acetylgalactosamine-6-sulfate sulfatase causing mucopolysaccharidosis IVA phenotypes. Hum Mol Genet 9(9):1283–1290

    Article  CAS  PubMed  Google Scholar 

  47. Rapp C, Bai X (1859) Reithmeier RAF (2017) Molecular analysis of human solute carrier SLC26 anion transporter disease-causing mutations using 3-dimensional homology modeling. Biochim Biophys Acta Biomembr 12:2420–2434

    Google Scholar 

  48. Wacey AI, Krawczak M, Kakkar VV, Cooper DN (1994) Determinations of the factor IX mutational spectrum in haemophilia B: an analysis of missense mutations using a multi-domain molecular model of the activated protein. Hum Genet 94:594–608

    Article  CAS  PubMed  Google Scholar 

  49. Saito S, Ohno K, Okuyama T, Sakuraba H (2016) Structural basis of mucopolysaccharidosis type II and construction of a database of mutant iduronate 2-sulfatases. PLoS ONE 11(10):e0163964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Atkins AR, Brereton IM, Kroon PA, Lee HT, Smith R (1998) Calcium is essential for the structural integrity of the cysteine-rich, ligand-binding repeat of the low-density lipoprotein receptor. Biochemistry 37:1662–1670

    Article  CAS  PubMed  Google Scholar 

  51. Bieri S, Atkins AR, Lee HT, Winzor DJ, Smith R, Kroon PA (1998) Folding, calcium binding, and structural characterization of a concatemer of the first and second ligand-binding modules of the low-density lipoprotein receptor. Biochemistry 37:10994–11002

    Article  CAS  PubMed  Google Scholar 

  52. Guo Y, Yu X, Rihani K, Wang QY, Rong L (2004) The role of a conserved acidic residue in calcium-dependent protein folding for a low density lipoprotein (LDL)-A module implication in structure and function for the LDL receptor superfamily. J Biol Chem 279:16629–16637

    Article  CAS  PubMed  Google Scholar 

  53. Blacklow SC, Kim PS (1996) Protein folding and calcium binding defects arising from familial hypercholesterolemia mutations of the LDL receptor. Nat Struct Biol 3:758–762

    Article  CAS  PubMed  Google Scholar 

  54. North CL, Blacklow SC (1999) Structural independence of ligand-binding modules five and six of the LDL receptor. Biochemistry 38:3926–3935

    Article  CAS  PubMed  Google Scholar 

  55. North CL, Blacklow SC (2000) Evidence that familial hypercholesterolemia mutations of the LDL receptor cause limited local misfolding in an LDL-A module pair. Biochemistry 39:13127–13135

    Article  CAS  PubMed  Google Scholar 

  56. North CL, Blacklow SC (2000) Solution structure of the sixth LDL-A module of the LDL receptor. Biochemistry 39:2564–2571

    Article  CAS  PubMed  Google Scholar 

  57. Varret M, Rabès JP, Collod-Béroud G, Junien C, Boileau C, Béroud C (1997) Software and database for the analysis of mutations in the human LDL receptor gene. Nucleic Acids Res 25(1):172–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Varret M, Rabés JP, Thiart R, Kotze MJ, Baron H, Cenarro A, Descamps O, Ebhardt M, Hondelijn JC, Kostner GM, Miyake Y, Pocovi M, Schmidt H, Schuster H, Stuhrmann M, Yamamura T, Junien C, Béroud C, Boileau C (1998) LDLR Database (second edition): new additions to the database and the software, and results of the first molecular analysis. Nucleic Acids Res 26(1):248–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saha S, Boyd J, Werner JM, Knott V, Handford PA, Campbell ID (2001) Downing AK (2001) Solution structure of the LDL receptor EGF-AB pair: a paradigm for the assembly of tandem calcium binding EGF domains. Structure 9:451–456

    Article  CAS  PubMed  Google Scholar 

  60. Boswell EJ, Jeon H, Blacklow SC, Downing AK (2004) Global defects in the expression and function of the low density lipoprotein receptor (LDLR) associated with two familial hypercholesterolemia mutations resulting in misfolding of the LDLR epidermal growth factor-AB pair. J Biol Chem 279:30611–30621

    Article  CAS  PubMed  Google Scholar 

  61. Ohshiro T, Shimabukuro T, Sunagawa M, Ohta T (2009) An 11-year-old boy with familial hypercholesterolemia showing multiple xanthomas and advanced atherosclerosis, who responded to lipid-lowering therapy using statin. J Atheroscler Thromb 16:698–701

    Article  PubMed  Google Scholar 

  62. Vieira JR, Whittall RA, Cooper JA, Miller GJ, Humphries SE (2006) The A370T variant (StuI polymorphism) in the LDL receptor gene is not associated with plasma lipid levels or cardiovascular risk in UK men. Ann Hum Genet 70:697–704

    Article  CAS  PubMed  Google Scholar 

  63. Lombardi P, Sijbrands EJ, Kamerling S, Leuven JA, Havekes LM (1997) The T705I mutation of the low density lipoprotein receptor gene (FH Paris-9) does not cause familial hypercholesterolemia. Hum Genet 99:106–107

    Article  CAS  PubMed  Google Scholar 

  64. Heath KE, Whittall RA, Miller GJ, Humphries S (2000) I705 variant in the low density lipoprotein receptor gene has no effect on plasma cholesterol levels. J Med Genet 37:713–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Graham CA, Wright WT, Mcllhatton BP, Young IS, Nicholls DP (2006) The LDLR variant T705I does not cause the typical phenotype of familial hypercholesterolaemia. Atherosclerosis 188:218–219

    Article  CAS  PubMed  Google Scholar 

  66. Naoumova RP, Neuwirth C, Pottinger B, Whittal R, Humphries SE, Soutar AK (2004) Genetic diagnosis of familial hypercholesterolaemia: a mutation and a rare non-pathogenic amino acid variant in the same family. Atherosclerosis 174:67–71

    Article  CAS  PubMed  Google Scholar 

  67. Chang JH, Pan JP, Tai DY, Huang AC, Li PH, Ho HL, Hsieh HL, Chou SC, Lin WL, Lo E, Chang CY, Tseng J, Su MT, Lee-Chen GJ (2003) Identification and characterization of LDL receptor gene mutations in hyperlipidemic Chinese. J Lipid Res 44:1850–1858

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the New Strategic Research (P2P) project, Walailak University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nutjaree Jeenduang.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porntadavity, S., Jeenduang, N. Structure–Function Relationships of LDL Receptor Missense Mutations Using Homology Modeling. Protein J 38, 447–462 (2019). https://doi.org/10.1007/s10930-019-09860-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09860-5

Keywords

Navigation