Skip to main content

Advertisement

Log in

Prokaryotic Expression, In Vitro Biological Analysis, and In Silico Structural Evaluation of Guinea Pig IL-4

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Interleukin-4 is a signature cytokine of T-helper type 2 (Th2) cells that play a major role in shaping immune responses. Its role in highly relevant animal model of tuberculosis (TB) like guinea pig has not been studied till date. In the current study, the guinea pig IL-4 gene was cloned and expressed using a prokaryotic expression vector (pET30 a(+)). This approach yielded a recombinant protein of 19 kDa as confirmed by mass spectrometry analysis and named as recombinant guinea pig (rgp)IL-4 protein. The authenticity of the expression of rgpIL-4 protein was further verified through polyclonal anti-IL4 antiserum raised in rabbits that showed specific and strong binding with the recombinant protein. The biological activity of the rgpIL-4 was ascertained in RAW264.7 cells where LPS-treated nitric oxide (NO) production was found to be suppressed in the presence of this protein. The three-dimensional structure of guinea pig IL-4 was predicted by utilizing the template structure of human interleukin-4, which shared a sequence homology of 58%. The homology modeling result showed clear resemblance of guinea pig IL-4 structure with the human IL-4. Taken together, our study indicates that the newly expressed, biologically active rgpIL-4 protein could provide deeper understanding of the immune responses in guinea pig to different infectious diseases like TB and non-infectious ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Global tuberculosis report. (2018). World health organization: Global tuberculosis control. Geneva: WHO.

    Google Scholar 

  2. Roy, A., Eisenhut, M., Harris, R. J., Rodrigues, L. C., Sridhar, S., Habermann, S., et al. (2014). Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: Systematic review and meta-analysis. The BMJ,2014, 349.

    Google Scholar 

  3. Chang, K. C., & Leung, C. C. (2017). BCG Immunization: Efficacy, limitations, and future needs. In Y. Lu, L. Wang, H. Duanmu, C. Chanyasulkit, A. Strong, & H. Zhang (Eds.), Handbook of global tuberculosis control. Boston, MA: Springer.

    Google Scholar 

  4. Ordway, D., Palanisamy, G., Henao-Tamayo, M., Smith, E. E., Shanley, C., Orme, I. M., et al. (2007). The cellular immune response to Mycobacterium tuberculosis infection in the guinea pig. Journal of Immunology,179, 2532–2541.

    Article  CAS  Google Scholar 

  5. McMurray, D. N. (2016). Animal models of tuberculosis. In A. J. Hickey, A. Misra, & P. B. Fourie (Eds.), Drug delivery systems for tuberculosis prevention and treatment. Hoboken: Wiley.

    Google Scholar 

  6. Clark, S., Hall, Y., & Williams, A. (2015). Animal models of tuberculosis: Guinea pigs. Cold Spring Harbor Perspectives in Medicine,5, 018572.

    Article  Google Scholar 

  7. Lyons, M. J., Yoshimura, T., & McMurray, D. N. (2002). Mycobacterium bovis BCG vaccination augments interleukin-8 mRNA expression and protein production in guinea pig alveolar macrophages infected with Mycobacterium tuberculosis. Infection and Immunity,70, 5471–5478.

    Article  CAS  Google Scholar 

  8. Skwor, T. A., Cho, H., Cassidy, C., Yoshimura, T., & McMurray, D. N. (2004). Recombinant guinea pig CCL5 (RANTES) differentially modulates cytokine production in alveolar and peritoneal macrophages. Journal of Leukocytic Biology,76, 1229–1239.

    Article  CAS  Google Scholar 

  9. Lasco, T. M., Cassone, L., Kamohara, H., Yoshimura, T., & McMurray, D. N. (2005). Evaluating the role of tumor necrosis factor-alpha in experimental pulmonary tuberculosis in the guinea pig. Tuberculosis,85, 245–258.

    Article  CAS  Google Scholar 

  10. Dirisala, V. R., Jeevan, A., Ly, L. H., & McMurray, D. N. (2015). Molecular and biochemical characterization of recombinant guinea pig tumor necrosis factor-alpha. Mediators of Inflammation. https://doi.org/10.1155/2015/619480.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jeevan, A., McFarland, C. T., Yoshimura, T., Skwor, T., Cho, H., Lasco, T., et al. (2006). Production and characterization of guinea pig recombinant gamma interferon and its effect on macrophage activation. Infection and Immunity,74, 213–224.

    Article  CAS  Google Scholar 

  12. Dirisala, V. R., Jeevan, A., Bix, G., Yoshimura, T., & McMurray, D. N. (2012). Molecular cloning and expression of the IL-10 gene from guinea pigs. Gene,498, 120–127.

    Article  CAS  Google Scholar 

  13. Dirisala, V. R., Jeevan, A., Ly, L. H., & McMurray, D. N. (2013). Prokaryotic expression and in vitro functional analysis of IL-1β and MCP-1 from guinea pig. Molecular Biotechnology,54, 312–319.

    Article  CAS  Google Scholar 

  14. Dirisala, V. R., Jeevan, A., Ly, L. H., & McMurray, D. N. (2013). Molecular cloning, expression and in silico structural analysis of guinea pig IL-17. Molecular Biotechnology,55, 277–287.

    Article  CAS  Google Scholar 

  15. Urdahl, K. B., Shafiani, S., & Ernst, J. D. (2011). Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunology,4, 288–293.

    Article  CAS  Google Scholar 

  16. Zuniga, J., Torres-Garcia, D., Santos-Mendoza, T., Rodriguez-Reyna, T. S., Granados, J., & Yunis, E. J. (2012). Cellular and humoral mechanisms involved in the control of tuberculosis. Clinical and Developmental Immunology. https://doi.org/10.1155/2012/193923.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nolan, A., Fajardo, E., Huie, M. L., Condos, R., Pooran, A., Dawson, R., et al. (2013). Increased production of IL-4 and IL-12p40 from bronchoalveolar lavage cells are biomarkers of Mycobacterium tuberculosis in the sputum. PLoS ONE,8, 59461.

    Article  Google Scholar 

  18. Mihret, A., Bekele, Y., Loxton, A. G., Aseffa, A., Howe, R., & Walzl, G. (2012). Plasma level of IL-4 differs in patients infected with different modern lineages of M. tuberculosis. Journal of Tropical Medicine. https://doi.org/10.1155/2012/518564.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lienhardt, C., Azurri, A., Amedei, A., Fielding, K., Sillah, J., Sow, O. Y., et al. (2002). Active tuberculosis in Africa is associated with reduced Th1 and increased Th2 activity in vivo. European Journal of Immunology,32, 1605–1613.

    Article  CAS  Google Scholar 

  20. Jeevan, A., Yoshimura, T., Ly, L. H., Dirisala, V. R., & McMurray, D. N. (2011). Cloning and characterization of guinea pig interleukin-4: Reduced IL-4 mRNA after vaccination or Mycobacterium tuberculosis infection. Tuberculosis,91, 47–56.

    Article  CAS  Google Scholar 

  21. Hiroi, M., Sakaeda, Y., Yamaguchi, H., & Ohmori, Y. (2013). Anti-inflammatory cytokine interleukin-4 inhibits inducible nitric oxide synthase gene expression in the mouse macrophage cell line RAW264.7 through the repression of octamer-dependent transcription. Mediators of Inflammation. https://doi.org/10.1155/2013/369693.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rishi, L., Dhiman, R., Raje, M., & Majumdar, S. (2007). Nitric oxide induces apoptosis in cutaneous T-cell lymphomas (HuT-78) by downregulating constituting NF-KB. Biochimica et Biophysica Acta,1770, 1230–1239.

    Article  CAS  Google Scholar 

  23. Yang, J., & Yang, Z. (2015). Protein structure and function prediction using I‐TASSER. Current Protocols in Bioinformatics,52, 5–8.

    Article  Google Scholar 

  24. Wan, Y. Y., & Flavell, R. A. (2009). How diverse-CD4 effector T cells and their functions. Journal of Molecular Cell Biology,1, 20–36.

    Article  CAS  Google Scholar 

  25. Van Dyken, S. J., & Locksley, R. M. (2013). Interleukin-4-and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annual Review of Immunology,31, 317–343.

    Article  Google Scholar 

  26. Lugo-Villarino, G., Vérollet, C., Maridonneau-Parini, I., & Neyrolles, O. (2011). Macrophage polarization: Convergence point targeted by Mycobacterium tuberculosis and HIV. Frontiers in Immunology,2, 43.

    Article  Google Scholar 

  27. Romero-Adrian, T., Leal-Montiel, J., Fernández, G., & Valecillo, A. (2015). Role of cytokines and other factors involved in the Mycobacterium tuberculosis infection. World Journal of Immunology,5, 16–50.

    Article  Google Scholar 

  28. Nolan, A., Fajardo, E., Huie, M. L., Condos, R., Pooran, A., Dawson, R., et al. (2013). Increased production of IL-4 and IL-12p40 from bronchoalveolar lavage cells are biomarkers of Mycobacterium tuberculosis in the sputum. PLoS ONE,8, e59461.

    Article  CAS  Google Scholar 

  29. Manca, C., Reed, M. B., Freeman, S., Mathema, B., Kreiswirth, B., Barry, C. E., 3rd, et al. (2004). Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis. Infection and Immunity,72, 5511–5514.

    Article  CAS  Google Scholar 

  30. Rook, G. A., Hernandez-Pando, R., Dheda, K., & Teng Seah, G. (2004). IL-4 in tuberculosis: Implications for vaccine design. Trends in Immunology,25, 483–488.

    Article  CAS  Google Scholar 

  31. Guler, R., Parihar, S. P., Savvi, S., Logan, E., Schwegmann, A., Roy, S., et al. (2015). IL-4Rα-dependent alternative activation of macrophages is not decisive for Mycobacterium tuberculosis pathology and bacterial burden in mice. PLoS ONE,10, e0121070.

    Article  Google Scholar 

  32. Lindblad, E. B., Elhay, M. J., Silva, R., Appelberg, R., & Andersen, P. (1997). Adjuvant modulation of immune responses to tuberculosis subunit vaccines. Infection and Immunity,65, 623–629.

    Article  CAS  Google Scholar 

  33. Hernandez-Pando, R., Pavön, L., Arriaga, K., Orozco, H., Madrid-Marina, V., & Rook, G. (1997). Pathogenesis of tuberculosis in mice exposed to low and high doses of an environmental mycobacterial saprophyte before infection. Infection and Immunity,65, 3317–3327.

    Article  CAS  Google Scholar 

  34. Wangoo, A., Sparer, T., Brown, I. N., Snewin, V. A., Janssen, R., Thole, J., et al. (2001). Contribution of Th1 and Th2 cells to protection and pathology in experimental models of granulomatous lung disease. The Journal of Immunology,166, 3432–3439.

    Article  CAS  Google Scholar 

  35. Hernandez-Pando, R., Pavön, L., Arriaga, K., Orozco, H., Madrid-Marina, V., & Rook, G. (2004). Pulmonary tuberculosis in BALB/c mice with non-functional IL-4 genes: changes in the inflammatory effects of TNF-α and in the regulation of fibrosis. European Journal of Immunology,34, 174–183.

    Article  CAS  Google Scholar 

  36. Tamgue, O., Gcanga, L., Ozturk, M., Whitehead, L., Pillay, S., Jacobs, R., et al. (2019). Differential targeting of c-Maf, Bach-1, and Elmo-1 by microRNA-143 and microRNA-365 promotes the intracellular growth of Mycobacterium tuberculosis in alternatively IL-4/IL-13 activated macrophages. Frontiers in Immunology,10, 421.

    Article  CAS  Google Scholar 

  37. Pooran, A., Davids, M., Nel, A., Shoko, A., Blackburn, J., & Dheda, K. (2019). IL-4 subverts mycobacterial containment in M. tuberculosis-infected human macrophages. European Respiratory Journal. https://doi.org/10.1183/13993003.02242-2018.

    Article  PubMed  Google Scholar 

  38. Buccheri, S., Reljic, R., Caccamo, N., Ivanyi, J., Singh, M., Salerno, A., et al. (2007). IL-4 depletion enhances host resistance and passive IgA protection against tuberculosis infection in BALB/c mice. European Journal of Immunology,37, 729–737.

    Article  CAS  Google Scholar 

  39. Ly, L. H., Jeevan, A., & McMurray, D. N. (2009). Neutralization of TNFα alters inflammation in guinea pig Tuberculous pleuritis. Microbes and Infection,11, 680–688.

    Article  CAS  Google Scholar 

  40. Mitchell, L. C., David, L. A., & Lipsky, P. E. (1989). Promotion of human T lymphocyte proliferation by IL-4. Journal of Immunology,142, 1548.

    CAS  Google Scholar 

  41. Ly, L. H., Russell, M. I., & McMurray, D. N. (2008). Cytokine profiles in primary and secondary pulmonary granulomas of guinea pigs with tuberculosis. American Journal of Respiratory and Cellular Molecular Biology,38, 455–462.

    Article  CAS  Google Scholar 

  42. Chu, C., Zhang, W., Li, J., Wan, Y., Wang, Z., Duan, R., et al. (2018). A single codon optimization enhances recombinant human TNF-α vaccine expression in Escherichia coli. BioMed Research International. https://doi.org/10.1155/2018/3025169.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kaur, J., Kumar, A., & Kaur, J. (2018). Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. International Journal of Biological Macromolecules,106, 803–822.

    Article  CAS  Google Scholar 

  44. Dirisala, V. R., Nair, R. R., Rao, K. R. S. S., Krupanidhi, S., & Giridhar, P. (2017). Recombinant pharmaceutical protein production in plants: Unraveling the therapeutic potential of molecular farming. Acta Physiologiae Plantarum,39, 18. https://doi.org/10.1007/s11738-016-2315-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Vignan’s University for providing facilities under FIST to execute this work. The authors also thank NIT, Rourkela for providing facilities to execute some of the experiments. The authors acknowledge the support of SERB (ECR/2016/00304). We also thank the anonymous reviewers for their comments which helped us in improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaya R. Dirisala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 344 kb)

Supplementary figure 1. Structural validation of SAVES server. Figure (a) shows the Ramachandran plot for the predicted structure. (b) PROVE server showing the atomic resolution and (c) ERRAT2 score showing the overall quality factor. Supplementary figure 2. RAW264.7 cells were seeded overnight and stimulated next day with either LPS (10 µg/ml) or left alone for 48 h. Some of the combinations were pretreated with either rgpIL-4 protein or rgpIL-4 protein generated using codon-optimized IL-4 gene for 1 h before adding LPS. The nitrite assay was performed in harvested supernatants using Griess reagent as described in Materials and Methods. The data shown represent values of 3 independent experiments and are represented as Mean ± SEM. ** denotes p < 0.01 and * denotes p < 0.05.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omanakuttan, M., Konatham, H.R., Dirisala, V.R. et al. Prokaryotic Expression, In Vitro Biological Analysis, and In Silico Structural Evaluation of Guinea Pig IL-4. Mol Biotechnol 62, 104–110 (2020). https://doi.org/10.1007/s12033-019-00227-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00227-w

Keywords

Navigation